Qual a vantagem fundamental da respiração aeróbia sobre a respiração anaeróbia?

Organismos aeróbios dependem do oxigênio para obter energia, e os anaeróbios não necessitam do oxigênio que, em certas concentrações, pode ser fatal para alguns organismos.

O fungo Saccharomyces cerevisiae realiza o processo de fermentação utilizado na fabricação do pão

Os organismos necessitam de energia para a manutenção de seu metabolismo. Essa energia está armazenada nos alimentos e, para que os organismos a obtenham, é necessária a realização de um desses processos: respiração celular ou fermentação.

Nesses dois processos, a molécula de glicose, obtida nos alimentos, é quebrada em moléculas menores, liberando parte da energia contida em suas ligações para a célula. No entanto, essa quebra ocorre de forma diferenciada nestes dois processos:

  • Respiração celular: a quebra da glicose ocorre na presença de oxigênio (respiração aeróbia) e tem como resíduos, ao final da reação, o gás carbônico e a água;

  • Fermentação: a quebra da glicose ocorre na ausência de oxigênio (respiração anaeróbia) e apresenta como resíduos álcool etílico e gás carbônico (fermentação alcoólica) ou ácido lático (fermentação lática).

Diante do exposto, podemos classificar os organismos como aeróbios ou anaeróbios:

Não pare agora... Tem mais depois da publicidade ;)

Aeróbios: dependem do oxigênio para obter energia, pois realizam respiração aeróbia. Aqui destacamos os organismos eucariontes pluricelulares, como os humanos;

Anaeróbios restritos ou obrigatórios: não dependem do oxigênio, pois realizam respiração anaeróbia. Dependendo da concentração de oxigênio no ambiente, isso pode danificar moléculas importantes como o DNA, levando esses organismos à morte. Exemplos desses organismos são as bactérias causadoras do tétano e do botulismo;

Anaeróbios facultativos: alguns organismos são classificados comoanaeróbios facultativos, pois, na presença de oxigênio, realizam respiração aeróbia e, na ausência desse gás, realizam os processos anaeróbios. Um exemplo é o fungo Saccharomyces cerevisiae, o levedo da cerveja, que realiza o processo de fermentação utilizado na fabricação de bebidas alcoólicas, como vinho e cerveja, e também do pão.

Por Helivania Sardinha dos Santos

Por Roberta das Neves

Doutora em Microbiologia pela UFRJ

Metabolismo energético

Os seres vivos utilizam a molécula de adenosina trifosfato (ATP) como fonte de energia para diferentes ações, desde o ato de virar uma página até os batimentos cardíacos. Basicamente, o ATP é constituído por um nucleotídeo composto pela base nitrogenada (adenina) ligada a um açúcar (ribose) e três fosfatos, cuja energia é armazenada nas ligações químicas entre os fosfatos. O rompimento dessa ligação libera fosfato que é utilizado nos processos celulares.

Quando a molécula de ATP perde um fosfato, essa se torna uma molécula com dois fosfatos, denominada adenosina difosfato (ADP), entretanto, quando o ATP é degradado a sua forma mais simples, liberando dois fosfatos e, consequentemente, mais energia, torna-se uma molécula com apenas um fosfato, denominada adenosina monofosfato (AMP).  O ATP é utilizado e gerado durante os processos de respiração celular, tanto na presença de oxigênio (respiração aeróbia) quanto na ausência de oxigênio (respiração anaeróbia e fermentação)

Estrutura do ATP, ADP e AMP (Foto: Objetos educacionais/Mec)

Respiração

A respiração divide-se em duas fases: a anaeróbia, que compreende a etapa da glicólise, que ocorre na ausência do oxigênio no citoplasma das células eucariótica e procariótica, e aeróbia que ocorre na presença do oxigênio. A fase aeróbia divide-se em duas etapas: o ciclo de Krebs que ocorre na matriz mitocondrial das células eucarióticas e no citoplasma das células procarióticas, e a cadeia respiratória que ocorre nas cristas mitocondriais e próximas à face interna da membrana plasmática, em eucariotos e procariotos, respectivamente.

Esquema simplificado dos processos que envolvem a respiração aeróbia (Foto: Objetos educacionais/Mec)

Glicólise: nessa etapa, a glicose (C$$$_6_6$$$H$$$_{12}_{12}$$$O$$$_6_6$$$) é oxidada, em um processo denominado glicólise, usando dois ATPs por moléculas de glicose para fornecer a energia inicial. Ao final da glicólise, produzem duas moléculas de piruvato, 4 ATPs, sendo que 2 ATPs irão repor os utilizados inicialmente, havendo, portanto um saldo final de 2 ATPs e a liberação de elétrons energizados e íons H$$$^+^+$$$, são capturados por aceptores de elétrons denominados NAD$$$^+^+$$$ (do inglês Nicotinamide Adenine Dinucleotide), formando, no final da glicólise, dois equivalentes reduzidos em NADH$$$^+^+$$$

Ciclo de Krebs: o piruvato, com três carbonos, produzido na glicólise, passa para o interior das mitocôndrias, onde é oxidado até o grupo acetil, com dois carbonos, pela ação da piruvato desidrogenase, liberando uma molécula de gás carbônico (CO$$$_2_2$$$) e energia, sendo parte dela captada quando NADH$$$^+^+$$$ é reduzido, formando NADH$$$_2_2$$$ e, a outra parte da energia é captada quando o grupo acetil é combinado com a coenzima A, formando a acetilcoenzima A (Acetil CoA). O Acetil CoA combina-se com um composto de quatro carbonos, o ácido oxalacético, e libera a coenzima A, formando o ácido cítrico. Ao longo do ciclo, o ácido cítrico perde dois carbonos na forma de CO$$$_2_2$$$ e oito hidrogênios que são captados por NAD e por um outro  aceptor de elétrons chamado FAD (do inglês, Flavin Adenine Dinucleotide). Ao final, forma-se o ácido oxalacético, que novamente se unirá ao acetil CoA, reiniciando o ciclo. Durante esse processo, formam-se também duas moléculas de GTP (do inglês Guanosine Triphosphate), muito semelhante ao ATP.

Cadeia respiratória ou fosforilação oxidativa: nessas regiões há enzimas oxidativas organizadas em sequência, denominadas citocromos, que atuam como transportadores de elétrons. A essa série de enzimas dá-se o nome de cadeia respiratória. As moléculas de NADH e FADH formadas na glicólise e no ciclo de Krebs são oxidadas na cadeia respiratória, transferindo os elétrons para os citocromos. À medida que os elétrons de hidrogênio provenientes dessas moléculas passam pelos transportadores, esses são oxidados e perdem energia que é armazenada em moléculas de ATP, através da fosforilação do ADP. Por esse fato, a cadeia respiratória também é conhecida como fosforilação oxidativa. O receptor final do hidrogênio é o oxigênio, formando a água. É de extrema importância o fornecimento constante de oxigênio, caso contrário os transportadores ficariam sempre com seus hidrogênios reduzidos, sem condições de receber novos hidrogênios, interrompendo a respiração. A cadeia respiratória é responsável pela maior parte de ATP produzido pela célula. Ao final, produz-se 8 NADH$$$_2_2$$$, 2 FADH$$$_2_2$$$ e 34 ATP.

Fermentação

A fermentação ocorre na ausência do oxigênio no citosol da célula eucariótica e procariótica. A glicose é degradada em substâncias mais simples, como o ácido lático (fermentação lática) e o álcool etílico (fermentação alcoólica). Tanto na fermentação lática como alcoólica há um saldo de apenas 2 moléculas de ATP e, em ambos os processos, iniciam com o ácido pirúvico obtido da glicólise, como descrito na respiração aeróbia.

FERMENTAÇÃO LÁTICA FERMENTAÇÃO ALCOÓLICA
Realizada por certas bactérias, protozoários, fungos e células do tecido muscular (durante intensa atividade física, há ausência de oxigênio, com isso as células realizam fermentação, e a liberação do ácido lático ocasiona a fadiga muscular) e hemácias. Realizada por certas bactérias e leveduras.
Processo utilizado para produção de iogurte, conservas, entre outros. Processo utilizado para produção de vinho, cerveja, pão (o fermento biológico contendo o fungo, acrescentado na massa, reage com o açúcar, produzindo CO2 que fica armazenado em cavidades dentro da massa), obtenção de álcool pela cana-de-açúcar, entre outros.
Piruvato é reduzido a lactato pela ação da enzima lactato-desidrogenase, utilizando íons de hidrogênio provenientes da reoxidação do NADH2 formados na glicólise. Piruvato é convertido a acetaldeído através da ação piruvato descarboxilase, gerando CO2 e NADH e reoxidando o NADH, através da álcool desidrogenase, o acetaldeído é convertido em álcool etílico
Como não há oxigênio, o aceptor final de hidrogênio é o próprio piruvato. Como não há oxigênio, o aceptor final de hidrogênio é o acetaldeído.

Exercícios resolvidos

(Enem - 2012) Há milhares de anos o homem faz uso da biotecnologia para a produção de alimentos como pães, cervejas e vinhos. Na fabricação de pães, por exemplo, são usados fungos unicelulares, chamados de leveduras, que são comercializados como fermento biológico. Eles são usados para promover o crescimento da massa, deixando-a leve e macia. O crescimento da massa do pão pelo processo citado é resultante da:

a) liberação de gás carbônico. 
b) formação de ácido lático. 
c) formação de água.
d) produção de ATP.
e) liberação de calor.

Gabarito: O processo de produção de pães ocorre por fermentação alcoólica, um processo anaeróbico com produção de etanol e de gás carbônico. É o gás carbônico o responsável pelo crescimento da massa do pão. Letra A.

Os comentários são de responsabilidade exclusiva de seus autores e não representam a opinião deste site. Se achar algo que viole os termos de uso, denuncie. Leia as perguntas mais frequentes para saber o que é impróprio ou ilegal.

  • Everson Santana

    2013-10-23T13:15:53

    Ótima Iniciativa da Globo ^-^

  • Jose Junior

    2013-09-24T18:39:59

    Postem mais assuntos.

Qual a vantagem da respiração aeróbia sobre a respiração anaeróbia?

Anaeróbios facultativos e obrigatórios Essa abordagem permite-lhes obter mais ATP a partir de suas moléculas de glicose quando o oxigênio está presente — já que a respiração celular aeróbica produz mais ATP do que as vias anaeróbicas — e também manter o metabolismo e permanecer vivo quando o oxigênio é escasso.

Qual a diferença da respiração aeróbia para a respiração anaeróbia?

a respiração aeróbica: que acontece na presença de oxigênio; a respiração anaeróbica: ou seja, sem oxigênio.

Por que a respiração aeróbica é muito mais eficiente do que a anaeróbia?

O processo de respiração aeróbica é muito mais eficiente que o da fermentação: para cada molécula de glicose degradada, são produzidas na respiração 38 moléculas de ATP, a partir de 38 moléculas de ADP e 38 grupos de fosfatos.

Qual é a importância da respiração aeróbia?

Respiração Aeróbica. A maioria dos seres vivos utiliza esse processo para obter energia para suas atividades. Através da respiração aeróbica é quebrada a molécula de glicose, produzida na fotossíntese pelos organismos produtores e obtida através da alimentação pelos consumidores.

Qual é a principal diferença entre a respiração aeróbia e da fermentação?

A fermentação é um processo anaeróbio, enquanto a respiração celular é um processo aeróbio. A fermentação não apresenta uma cadeia de transporte de elétrons, como ocorre na respiração celular. O aceptor final de elétrons na fermentação é uma molécula orgânica, e na respiração celular, é o oxigênio.

Toplist

Última postagem

Tag