Qual a importância dos espaçamentos das linhas de trem na dilatação linear?

Praticamente todas as substâncias, sejam sólidas, líquidas ou gasosas, dilatam-se com o aumento da temperatura e contraem-se quando sua temperatura é diminuída e o efeito da variação de temperatura, especialmente a dilatação, tem muitas implicações na vida diária.

Qual a importância dos espaçamentos das linhas de trem na dilatação linear?

Você já deve ter notado um espaçamento nos blocos de concreto das ruas e avenidas, bem como nos trilhos do trem ou em algumas pontes. Esse espaçamento é necessário justamente por causa da dilatação que os materiais sofrem. Por exemplo, uma ponte metálica de 300m de comprimento pode aumentar até 20cm.

Também em casa, aplicamos o efeito do aumento da temperatura, por exemplo, para abrirmos tampas de vidros de conserva, aquecendo-os de alguma forma.

O controle da temperatura feito através de termostatos com lâminas bimetálicas, utilizadas no ferro elétrico e em termopares que são os dispositivos que constam em automóveis e outros tipos de termômetros, ocorre com base na dilatação de certos materiais.

Todos os corpos se dilatam da mesma maneira?

A dilatação é proporcional ao aumento de temperatura, mas não é a mesma para diferentes materiais, ou seja, mesmo para uma mesma variação de temperatura, a dilatação dos corpos não será a mesma para diferentes materiais, pois cada um tem um coeficiente de dilatação característico.

Devido ao aumento de volume que é diferente para cada material, não se recomenda encher completamente o tanque de combustível dos automóveis, pois a gasolina derramaria, aproximadamente, dois litros se houvesse uma variação de 30oC na temperatura.

As tampas de recipientes de vidro, como as conservas, aumentam de dimensões mais do que o vidro, por isso soltam-se mais facilmente quando aquecidas.

Além disso, a dilatação depende de como é feito o corpo. Um prato de vidro grosso, por exemplo, estala e pode se quebrar quando colocamos água muito quente, pois as paredes internas se dilatam antes das externas, mas pratos de vidro mais finos não se rompem tão facilmente, pois se aquecem de modo mais uniforme, por isso, os pratos feitos para uso doméstico são de vidros especiais como o pirex que resistem a grandes variações de temperatura.

A dilatação de um corpo ocorre em todas suas dimensões. Nos corpos sólidos a dilatação pode ser:

·  DILATAÇÃO LINEAR

Ocorre quando o corpo tem expansão em uma dimensão.

Qual a importância dos espaçamentos das linhas de trem na dilatação linear?
Qual a importância dos espaçamentos das linhas de trem na dilatação linear?

Por exemplo, os fios de telefone ou luz. Expostos ao Sol nos dias quentes do verão, variam suas temperaturas consideravelmente, fazendo com que o fio se estenda causando um envergamento maior, pois aumenta seu comprimento que passa de um comprimento inicial (Li) a um comprimento final (Lf). A mesma coisa acontece com o fio de cabelo quando se utiliza a "chapinha" para alisá-lo. Dizemos que a dilatação provocou um aumento no comprimento dado por:

DL= Lf - Li.

A dilatação do fio depende de três fatores:

·  da substância de que é feito o fio;

·  da variação de temperatura sofrida pelo fio;

·  e do comprimento inicial do fio.

O comportamento aqui descrito para um fio é geral para qualquer corpo que tenha uma de suas dimensões muito maior do que as outras duas e, nesse caso, podemos nos concentrar na dilatação linear e calcular a variação no comprimento do corpo pela expressão:

  DL = a L0DT

onde:

·  DL é variação de comprimento do fio, ou seja, é a dilatação linear;

·  a é o coeficiente de dilatação linear, que é uma característica da substância;

·  Li é o comprimento inicial;

·  DT é a variação de temperatura, ou seja, DT = Tf - Ti, onde Ti representa a temperatura inicial do fio e Tf a temperatura final.

Na tabela podemos verificar o valor do coeficiente de dilatação linear de algumas substâncias.

Qual a importância dos espaçamentos das linhas de trem na dilatação linear?

Pela tabela podemos verificar o valor de alguns coeficientes de dilatação para alguns materiais e compará-los. Observamos que o valor do coeficiente para o vidro pirex é, aproximadamente, três vezes menor do que o vidro comum por isso ele suporta maiores variações de temperatura e não trinca tão facilmente como o vidro comum.

O álcool tem um coeficiente de dilatação muito maior do que o mercúrio e ambos são utilizados na fabricação de termômetros.

Na simulação, podemos observar o fenômeno da dilatação linear em um fio: quando há aumento de temperatura, há um aumento na extensão do fio.

DILATAÇÃO SUPERFICIAL

Qual a importância dos espaçamentos das linhas de trem na dilatação linear?

Há corpos que podem ser considerados bidimensionais, pois sua terceira dimensão é desprezível frente às outras duas, por exemplo, uma chapa. Neste caso, a expansão ocorre nas suas duas dimensões lineares, ou seja, na área total do corpo.

Na figura vemos uma chapa retangular que, quando aquecida, teve toda a sua superfície aumentada, passando de uma área inicial (Si) a uma área final (Sf), de modo que a dilatação superficial é (DS, sendo DS= Sf - Si).

A dilatação superficial, da mesma forma que a dilatação linear, depende:

·  da variação de temperatura sofrida pelo corpo (DT);

·  da área inicial (Si) e

·  do material de que é feito o corpo, porém, o coeficiente utilizado é o "coeficiente de dilatação superficial" (b) que vale duas vezes o coeficiente de dilatação linear, isto é: b = 2 a

Assim, podemos calcular a dilatação ocorrida na superfície pela seguinte expressão matemática:

DS = b S0DT

Onde:

·  DS é a dilatação superficial ou o quanto a superfície variou;

·  bé o coeficiente de dilatação superficial;

·  Si é a área inicial;

Qual a importância dos espaçamentos das linhas de trem na dilatação linear?

·  DT é a variação de temperatura.

A dilatação superficial é utilizada na colocação de aros metálicos ao redor das rodas de carroças. Neste caso, o aro tem diâmetro menor que o da roda por isso é aquecido para que se possa colocá-lo e ao esfriar, se contrai, prendendo-se fortemente à roda de madeira.

Podemos ver uma simulação onde ocorre o fenômeno da dilatação superficial em uma chapa: quando há aumento de temperatura, há um aumento nas dimensões do corpo.

O controle de temperatura do ferro elétrico é feito por um termostato constituído por uma lâmina bimetálica que se dilata e se curva, formando um arco, quando aquecida, interrompendo o circuito elétrico. Quando fria, a lâmina permanece plana e torna a fazer o contato no circuito elétrico.

DILATAÇÃO VOLUMÉTRICA

A grande maioria dos corpos sólidos possui três dimensões: altura, comprimento e espessura; e, quando aquecidos, sofrem expansão nessas três dimensões o que proporciona um aumento no volume total do corpo.

Qual a importância dos espaçamentos das linhas de trem na dilatação linear?

A dilatação ocorre de modo semelhante às dilatações linear e superficial, porém dependente do coeficiente de dilatação volumétrica o que é igual a três vezes o coeficiente de dilatação linear, ou seja, g = 3 a

Então, podemos calcular a dilatação ocorrida no volume pela equação abaixo:

DV = gV0DT

onde:

·  DV é a dilatação volumétrica, ou seja, DV=Vf - Vi;

·  gé o coeficiente de dilatação volumétrica;

·  Vi é o volume inicial;

·  DT é a variação de temperatura.

A dilatação dos líquidos e gases ocorre da mesma forma que com os corpos sólidos?

Não podemos verificar a dilatação de um líquido sem colocá-lo em um recipiente e, portanto, quando o líquido é aquecido, haverá também a dilatação volumétrica do recipiente, logo, o que observamos e podemos medir é a dilatação aparente do líquido. Para sabermos sua dilatação real, precisamos descontar a dilatação do recipiente, e para isso, precisamos conhecer os coeficientes de dilatação volumétrica do líquido e do recipiente.

Por exemplo, os reservatórios de combustível são preparados prevendo o aumento do volume tanto do recipiente quanto do combustível.

termômetros que utilizam a dilatação dos líquidos como mercúrio e/ou álcool, para a determinação da temperatura dos corpos.

Também os gases, que não possuem volume definido, precisam ser colocados em recipientes fechados, e portanto, também devemos considerar a dilatação volumétrica dos recipientes que os contêm.

Os balonistas aplicam a dilatação dos gases para encher seus balões, pois, com o aumento da temperatura, o ar, dentro do balão, fica menos denso e se dilata fazendo com que o balão estufe. Veja a simulação da dilatação dos gases:

E se a temperatura for reduzida ao invés de ser aumentada?

Se a temperatura de um corpo é reduzida, normalmente, provoca uma diminuição do seu volume, entretanto, há exceções. A água é a mais comum delas: de 4oC a 0oC sofre um aumento de volume. Tal comportamento da água é conhecido como "dilatação anômala".

Esse fenômeno pode ser constatado em regiões com temperaturas muito baixas, durante o inverno. A água da superfície de um lago, em contato com o ar frio, aumenta de volume e congela, e o gelo funciona como um isolante térmico, não deixando que toda água do lago congele.

Na parte inferior do lago, a água líquida, mais densa que a água sólida da parte superior, está a 4oC. É por isso que ursos polares e esquimós conseguem pescar, mesmo no gelo, pois fazem buracos na superfície até alcançar a água líquida.

FONTE: http://www.if.ufrgs.br/~leila/dilata.htm


Qual a importância da dilatação linear?

Uma das consequências da dilatação térmica linear pode ser percebida em obras da engenharia, por exemplo, as juntas de dilatação (figura do título) que existem nos trilhos de trem ou nas calçadas.

Quais são as principais características que se leva em consideração na dilatação linear?

Dilatação térmica linear é um fenômeno em que um corpo de formato alongado sofre um aumento em seu comprimento por conta de um aumento de temperatura. A dilatação sofrida por um corpo depende de fatores como a variação de temperatura sofrida e o coeficiente de dilatação característico de cada substância.

Quais são os fatores que influenciam na dilatação de um corpo?

Resposta. O principal fator que influencia na dilatação dos corpos é a temperatura dos mesmos: quanto mais quente mais dilatação, quanto mais frio mais contração.

Quais fatores compõem a fórmula da dilatação linear?

Como calcular a dilatação linear?.
ΔL = Variação do comprimento..
L0 = Comprimento inicial..
α = Coeficiente de dilatação linear..
Δθ = Variação de temperatura..