Colonization of pregnant females by group b streptococcus puts the neonate at risk because

1. Doran KS, Nizet V. Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Mol Microbiol (2004) 54(1):23–31. 10.1111/j.1365-2958.2004.04266.x [PubMed] [CrossRef] [Google Scholar]

2. Verani JR, McGee L, Schrag SJ, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC) Prevention of perinatal group B streptococcal disease – revised guidelines from CDC, 2010. MMWR Recomm Rep (2010) 59(RR–10):1–36. [PubMed] [Google Scholar]

3. Maisey HC, Doran KS, Nizet V. Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med (2008) 10:e27. 10.1017/S1462399408000811 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Edmond KM, Kortsalioudaki C, Scott S, Schrag SJ, Zaidi AK, Cousens S, et al. Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis. Lancet (2012) 379(9815):547–56. 10.1016/S0140-6736(11)61651-6 [PubMed] [CrossRef] [Google Scholar]

5. Bedford H, de Louvois J, Halket S, Peckham C, Hurley R, Harvey D. Meningitis in infancy in England and Wales: follow up at age 5 years. BMJ (2001) 323(7312):533–6. 10.1136/bmj.323.7312.533 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Lawn JE, Cousens S, Zupan J, The Lancet Neonatal Survival Steering Team 4 Million neonatal deaths: when? Where? Why? Lancet (2005) 365(9462):891–900. 10.1016/S0140-6736(05)71048-5 [PubMed] [CrossRef] [Google Scholar]

7. Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. Clin Microbiol Rev (2014) 27(1):21–47. 10.1128/CMR.00031-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Winn HN. Group B Streptococcus infection in pregnancy. Clin Perinatol (2007) 34(3):387–92. 10.1016/j.clp.2007.03.012 [PubMed] [CrossRef] [Google Scholar]

9. Namavar Jahromi B, Poorarian S, Poorbarfehee S. The prevalence and adverse effects of group B streptococcal colonization during pregnancy. Arch Iran Med (2008) 11(6):654–7. [PubMed] [Google Scholar]

10. Chan GJ, Lee AC, Baqui AH, Tan J, Black RE. Prevalence of early-onset neonatal infection among newborns of mothers with bacterial infection or colonization: a systematic review and meta-analysis. BMC Infect Dis (2015) 15:118. 10.1186/s12879-015-0813-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Boyer KM, Gotoff SP. Prevention of early-onset neonatal group B streptococcal disease with selective intrapartum chemoprophylaxis. N Engl J Med (1986) 314(26):1665–9. 10.1056/NEJM198606263142603 [PubMed] [CrossRef] [Google Scholar]

12. Berardi A, Rossi C, Guidotti I, Vellani G, Lugli L, Bacchi Reggiani ML, et al. Factors associated with intrapartum transmission of group B Streptococcus. Pediatr Infect Dis J (2014) 33(12):1211–5. 10.1097/INF.0000000000000439 [PubMed] [CrossRef] [Google Scholar]

13. Schrag S, Gorwitz R, Fultz-Butts K, Schuchat A. Prevention of perinatal group B streptococcal disease: a public health perspective. Centers for Disease Control and Prevention. MMWR Recomm Rep (1996) 45(RR–7):1–24. [PubMed] [Google Scholar]

14. Slogrove AL, Goetghebuer T, Cotton MF, Singer J, Bettinger JA. Pattern of infectious morbidity in HIV-exposed uninfected infants and children. Front Immunol (2016) 7:164. 10.3389/fimmu.2016.00164 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Brigtsen AK, Jacobsen AF, Dedi L, Melby KK, Fugelseth D, Whitelaw A. Maternal colonization with group B Streptococcus is associated with an increased rate of infants transferred to the neonatal intensive care unit. Neonatology (2015) 108(3):157–63. 10.1159/000434716 [PubMed] [CrossRef] [Google Scholar]

16. Wu P, Feldman AS, Rosas-Salazar C, James K, Escobar G, Gebretsadik T, et al. Relative importance and additive effects of maternal and infant risk factors on childhood asthma. PLoS One (2016) 11(3):e0151705. 10.1371/journal.pone.0151705 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Bisharat N, Crook DW, Leigh J, Harding RM, Ward PN, Coffey TJ, et al. Hyperinvasive neonatal group B Streptococcus has arisen from a bovine ancestor. J Clin Microbiol (2004) 42(5):2161–7. 10.1128/JCM.42.5.2161-2167.2004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Brochet M, Couve E, Zouine M, Vallaeys T, Rusniok C, Lamy MC, et al. Genomic diversity and evolution within the species Streptococcus agalactiae. Microbes Infect (2006) 8(5):1227–43. 10.1016/j.micinf.2005.11.010 [PubMed] [CrossRef] [Google Scholar]

19. Sun J, Fang W, Ke B, He D, Liang Y, Ning D, et al. Inapparent Streptococcus agalactiae infection in adult/commercial tilapia. Sci Rep (2016) 6:26319. 10.1038/srep26319 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Manning SD, Springman AC, Million AD, Milton NR, McNamara SE, Somsel PA, et al. Association of group B Streptococcus colonization and bovine exposure: a prospective cross-sectional cohort study. PLoS One (2010) 5(1):e8795. 10.1371/journal.pone.0008795 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Lancefield RC. A serological differentiation of specific types of bovine hemolytic streptococci (Group B). J Exp Med (1934) 59(4):441–58. 10.1084/jem.59.4.441 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Berti F, Campisi E, Toniolo C, Morelli L, Crotti S, Rosini R, et al. Structure of the type IX group B Streptococcus capsular polysaccharide and its evolutionary relationship with types V and VII. J Biol Chem (2014) 289(34):23437–48. 10.1074/jbc.M114.567974 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH, Petit S, et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999–2005. JAMA (2008) 299(17):2056–65. 10.1001/jama.299.17.2056 [PubMed] [CrossRef] [Google Scholar]

24. Jones N, Bohnsack JF, Takahashi S, Oliver KA, Chan MS, Kunst F, et al. Multilocus sequence typing system for group B Streptococcus. J Clin Microbiol (2003) 41(6):2530–6. 10.1128/JCM.41.6.2530-2536.2003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Xia FD, Mallet A, Caliot E, Gao C, Trieu-Cuot P, Dramsi S. Capsular polysaccharide of Group B Streptococcus mediates biofilm formation in the presence of human plasma. Microbes Infect (2015) 17(1):71–6. 10.1016/j.micinf.2014.10.007 [PubMed] [CrossRef] [Google Scholar]

26. Russell NJ, Seale AC, O’Driscoll M, O’Sullivan C, Bianchi-Jassir F, Gonzalez-Guarin J, et al. Maternal colonization with group B Streptococcus and serotype distribution worldwide: systematic review and meta-analyses. Clin Infect Dis (2017) 65(Suppl_2):S100–11. 10.1093/cid/cix658 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Stoll BJ, Schuchat A. Maternal carriage of group B streptococci in developing countries. Pediatr Infect Dis J (1998) 17(6):499–503. 10.1097/00006454-199806000-00013 [PubMed] [CrossRef] [Google Scholar]

28. Regan JA, Klebanoff MA, Nugent RP. The epidemiology of group B streptococcal colonization in pregnancy. Vaginal infections and prematurity study group. Obstet Gynecol (1991) 77(4):604–10. [PubMed] [Google Scholar]

29. Kwatra G, Cunnington MC, Merrall E, Adrian PV, Ip M, Klugman KP, et al. Prevalence of maternal colonisation with group B Streptococcus: a systematic review and meta-analysis. Lancet Infect Dis (2016) 16(9):1076–84. 10.1016/S1473-3099(16)30055-X [PubMed] [CrossRef] [Google Scholar]

30. Alp F, Findik D, Dagi HT, Arslan U, Pekin AT, Yilmaz SA. Screening and genotyping of group B Streptococcus in pregnant and non-pregnant women in Turkey. J Infect Dev Ctries (2016) 10(3):222–6. 10.3855/jidc.6190 [PubMed] [CrossRef] [Google Scholar]

31. Le Doare K, Heath PT. An overview of global GBS epidemiology. Vaccine (2013) 31(Suppl 4):D7–12. 10.1016/j.vaccine.2013.01.009 [PubMed] [CrossRef] [Google Scholar]

32. Manning SD, Lewis MA, Springman AC, Lehotzky E, Whittam TS, Davies HD. Genotypic diversity and serotype distribution of group B Streptococcus isolated from women before and after delivery. Clin Infect Dis (2008) 46(12):1829–37. 10.1086/588296 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Khan MA, Faiz A, Ashshi AM. Maternal colonization of group B Streptococcus: prevalence, associated factors and antimicrobial resistance. Ann Saudi Med (2015) 35(6):423–7. 10.5144/0256-4947.2015.423 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Capan-Melser M, Mombo Ngoma G, Akerey-Diop D, Basra A, Wurbel H, Groger M, et al. Evaluation of intermittent preventive treatment of malaria against group B Streptococcus colonization in pregnant women: a nested analysis of a randomized controlled clinical trial of sulfadoxine/pyrimethamine versus mefloquine. J Antimicrob Chemother (2015) 70(6):1898–902. 10.1093/jac/dkv041 [PubMed] [CrossRef] [Google Scholar]

35. Stapleton RD, Kahn JM, Evans LE, Critchlow CW, Gardella CM. Risk factors for group B streptococcal genitourinary tract colonization in pregnant women. Obstet Gynecol (2005) 106(6):1246–52. 10.1097/01.AOG.0000187893.52488.4b [PubMed] [CrossRef] [Google Scholar]

36. Akoh CC, Pressman EK, Cooper E, Queenan RA, Pillittere J, O’Brien KO. Prevalence and risk factors for infections in a pregnant adolescent population. J Pediatr Adolesc Gynecol (2017) 30(1):71–5. 10.1016/j.jpag.2016.08.001 [PubMed] [CrossRef] [Google Scholar]

37. Brzychczy-Wloch M, Pabian W, Majewska E, Zuk MG, Kielbik J, Gosiewski T, et al. Dynamics of colonization with group B streptococci in relation to normal flora in women during subsequent trimesters of pregnancy. New Microbiol (2014) 37(3):307–19. [PubMed] [Google Scholar]

38. Ferrieri P, Baker CJ, Hillier SL, Flores AE. Diversity of surface protein expression in group B streptococcal colonizing & invasive isolates. Indian J Med Res (2004) 119(Suppl):191–6. [PubMed] [Google Scholar]

39. Edwards MS, Rench MA, Palazzi DL, Baker CJ. Group B streptococcal colonization and serotype-specific immunity in healthy elderly persons. Clin Infect Dis (2005) 40(3):352–7. 10.1086/426820 [PubMed] [CrossRef] [Google Scholar]

40. Kwatra G, Adrian PV, Shiri T, Buchmann EJ, Cutland CL, Madhi SA. Serotype-specific acquisition and loss of group B Streptococcus recto-vaginal colonization in late pregnancy. PLoS One (2014) 9(6):e98778. 10.1371/journal.pone.0098778 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Teatero S, Ferrieri P, Martin I, Demczuk W, McGeer A, Fittipaldi N. Serotype distribution, population structure, and antimicrobial resistance of group B Streptococcus strains recovered from colonized pregnant women. J Clin Microbiol (2017) 55(2):412–22. 10.1128/JCM.01615-16 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Parker RE, Laut C, Gaddy JA, Zadoks RN, Davies HD, Manning SD. Association between genotypic diversity and biofilm production in group B Streptococcus. BMC Microbiol (2016) 16:86. 10.1186/s12866-016-0704-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Park SE, Jiang S, Wessels MR. CsrRS and environmental pH regulate group B Streptococcus adherence to human epithelial cells and extracellular matrix. Infect Immun (2012) 80(11):3975–84. 10.1128/IAI.00699-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Sheen TR, Jimenez A, Wang NY, Banerjee A, van Sorge NM, Doran KS. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract. J Bacteriol (2011) 193(24):6834–42. 10.1128/JB.00094-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Wang NY, Patras KA, Seo HS, Cavaco CK, Rosler B, Neely MN, et al. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization. J Infect Dis (2014) 210(6):982–91. 10.1093/infdis/jiu151 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Baron MJ, Bolduc GR, Goldberg MB, Auperin TC, Madoff LC. Alpha C protein of group B Streptococcus binds host cell surface glycosaminoglycan and enters cells by an actin-dependent mechanism. J Biol Chem (2004) 279(23):24714–23. 10.1074/jbc.M402164200 [PubMed] [CrossRef] [Google Scholar]

47. Jiang S, Wessels MR. BsaB, a novel adherence factor of group B Streptococcus. Infect Immun (2014) 82(3):1007–16. 10.1128/IAI.01014-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Rego S, Heal TJ, Pidwill GR, Till M, Robson A, Lamont RJ, et al. Structural and functional analysis of cell wall-anchored polypeptide adhesin BspA in Streptococcus agalactiae. J Biol Chem (2016) 291(31):15985–6000. 10.1074/jbc.M116.726562 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Santi I, Scarselli M, Mariani M, Pezzicoli A, Masignani V, Taddei A, et al. BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol Microbiol (2007) 63(3):754–67. 10.1111/j.1365-2958.2006.05555.x [PubMed] [CrossRef] [Google Scholar]

50. Banerjee A, Kim BJ, Carmona EM, Cutting AS, Gurney MA, Carlos C, et al. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun (2011) 2:462. 10.1038/ncomms1474 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Schubert A, Zakikhany K, Schreiner M, Frank R, Spellerberg B, Eikmanns BJ, et al. A fibrinogen receptor from group B Streptococcus interacts with fibrinogen by repetitive units with novel ligand binding sites. Mol Microbiol (2002) 46(2):557–69. 10.1046/j.1365-2958.2002.03177.x [PubMed] [CrossRef] [Google Scholar]

52. Dehbashi S, Pourmand MR, Mashhadi R. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae. Iran J Microbiol (2016) 8(1):73–9. [PMC free article] [PubMed] [Google Scholar]

53. Devi AS, Ponnuraj K. Cloning, expression, purification and ligand binding studies of novel fibrinogen-binding protein FbsB of Streptococcus agalactiae. Protein Expr Purif (2010) 74(2):148–55. 10.1016/j.pep.2010.07.004 [PubMed] [CrossRef] [Google Scholar]

54. Tamura GS, Rubens CE. Group B streptococci adhere to a variant of fibronectin attached to a solid phase. Mol Microbiol (1995) 15(3):581–9. 10.1111/j.1365-2958.1995.tb02271.x [PubMed] [CrossRef] [Google Scholar]

55. Hull JR, Tamura GS, Castner DG. Interactions of the streptococcal C5a peptidase with human fibronectin. Acta Biomater (2008) 4(3):504–13. 10.1016/j.actbio.2008.01.009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Cheng Q, Stafslien D, Purushothaman SS, Cleary P. The group B streptococcal C5a peptidase is both a specific protease and an invasin. Infect Immun (2002) 70(5):2408–13. 10.1128/IAI.70.5.2408-2413.2002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Franken C, Haase G, Brandt C, Weber-Heynemann J, Martin S, Lammler C, et al. Horizontal gene transfer and host specificity of beta-haemolytic streptococci: the role of a putative composite transposon containing scpB and lmb. Mol Microbiol (2001) 41(4):925–35. 10.1046/j.1365-2958.2001.02563.x [PubMed] [CrossRef] [Google Scholar]

58. Spellerberg B, Rozdzinski E, Martin S, Weber-Heynemann J, Schnitzler N, Lutticken R, et al. Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun (1999) 67(2):871–8. [PMC free article] [PubMed] [Google Scholar]

59. Zegels G, Van Raemdonck GA, Coen EP, Tjalma WA, Van Ostade XW. Comprehensive proteomic analysis of human cervical-vaginal fluid using colposcopy samples. Proteome Sci (2009) 7:17. 10.1186/1477-5956-7-17 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Soares GC, da Silva BA, Dos Santos MH, da Costa AF, Dos Santos AL, Morandi V, et al. Metallopeptidases produced by group B Streptococcus: influence of proteolytic inhibitors on growth and on interaction with human cell lineages. Int J Mol Med (2008) 22(1):119–25. 10.3892/ijmm.22.1.119 [PubMed] [CrossRef] [Google Scholar]

61. Bodaszewska-Lubas M, Brzychczy-Wloch M, Adamski P, Gosiewski T, Strus M, Heczko PB. Adherence of group B streptococci to human rectal and vaginal epithelial cell lines in relation to capsular polysaccharides as well as alpha-like protein genes – pilot study. Pol J Microbiol (2013) 62(1):85–90. [PubMed] [Google Scholar]

62. Patras KA, Rosler B, Thoman ML, Doran KS. Characterization of host immunity during persistent vaginal colonization by group B Streptococcus. Mucosal Immunol (2015) 8(6):1339–48. 10.1038/mi.2015.23 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Patras KA, Wang NY, Fletcher EM, Cavaco CK, Jimenez A, Garg M, et al. Group B Streptococcus covR regulation modulates host immune signalling pathways to promote vaginal colonization. Cell Microbiol (2013) 15(7):1154–67. 10.1111/cmi.12105 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Carey AJ, Tan CK, Mirza S, Irving-Rodgers H, Webb RI, Lam A, et al. Infection and cellular defense dynamics in a novel 17beta-estradiol murine model of chronic human group B Streptococcus genital tract colonization reveal a role for hemolysin in persistence and neutrophil accumulation. J Immunol (2014) 192(4):1718–31. 10.4049/jimmunol.1202811 [PubMed] [CrossRef] [Google Scholar]

65. Shabayek S, Bauer R, Mauerer S, Mizaikoff B, Spellerberg B. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions. Mol Microbiol (2016) 100(4):589–606. 10.1111/mmi.13335 [PubMed] [CrossRef] [Google Scholar]

66. Rosini R, Margarit I. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol (2015) 5:6. 10.3389/fcimb.2015.00006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. D’Urzo N, Martinelli M, Pezzicoli A, De Cesare V, Pinto V, Margarit I, et al. Acidic pH strongly enhances in vitro biofilm formation by a subset of hypervirulent ST-17 Streptococcus agalactiae strains. Appl Environ Microbiol (2014) 80(7):2176–85. 10.1128/AEM.03627-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Ho YR, Li CM, Yu CH, Lin YJ, Wu CM, Harn IC, et al. The enhancement of biofilm formation in Group B streptococcal isolates at vaginal pH. Med Microbiol Immunol (2013) 202(2):105–15. 10.1007/s00430-012-0255-0 [PubMed] [CrossRef] [Google Scholar]

69. Borges S, Silva J, Teixeira P. Survival and biofilm formation by Group B streptococci in simulated vaginal fluid at different pHs. Antonie Van Leeuwenhoek (2012) 101(3):677–82. 10.1007/s10482-011-9666-y [PubMed] [CrossRef] [Google Scholar]

70. Rinaudo CD, Rosini R, Galeotti CL, Berti F, Necchi F, Reguzzi V, et al. Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus. PLoS One (2010) 5(2):e9216. 10.1371/journal.pone.0009216 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Buscetta M, Papasergi S, Firon A, Pietrocola G, Biondo C, Mancuso G, et al. FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions. J Biol Chem (2014) 289(30):21003–15. 10.1074/jbc.M114.553073 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A (2011) 108(Suppl 1):4680–7. 10.1073/pnas.1002611107 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Nuriel-Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy. Front Microbiol (2016) 7:1031. 10.3389/fmicb.2016.01031 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One (2012) 7(6):e36466. 10.1371/journal.pone.0036466 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Kubota T, Nojima M, Itoh S. Vaginal bacterial flora of pregnant women colonized with group B Streptococcus. J Infect Chemother (2002) 8(4):326–30. 10.1007/s10156-002-0190-x [PubMed] [CrossRef] [Google Scholar]

76. Altoparlak U, Kadanali A, Kadanali S. Genital flora in pregnancy and its association with group B streptococcal colonization. Int J Gynaecol Obstet (2004) 87(3):245–6. 10.1016/j.ijgo.2004.08.006 [PubMed] [CrossRef] [Google Scholar]

77. Ronnqvist PD, Forsgren-Brusk UB, Grahn-Hakansson EE. Lactobacilli in the female genital tract in relation to other genital microbes and vaginal pH. Acta Obstet Gynecol Scand (2006) 85(6):726–35. 10.1080/00016340600578357 [PubMed] [CrossRef] [Google Scholar]

78. Rick AM, Aguilar A, Cortes R, Gordillo R, Melgar M, Samayoa-Reyes G, et al. Group B streptococci colonization in pregnant Guatemalan women: prevalence, risk factors, and vaginal microbiome. Open Forum Infect Dis (2017) 4(1):ofx020. 10.1093/ofid/ofx020 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Qiao J, Kwok L, Zhang J, Gao P, Zheng Y, Guo Z, et al. Reduction of Lactobacillus in the milks of cows with subclinical mastitis. Benef Microbes (2015) 6(4):485–90. 10.3920/BM2014.0077 [PubMed] [CrossRef] [Google Scholar]

80. Zarate G, Nader-Macias ME. Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Lett Appl Microbiol (2006) 43(2):174–80. 10.1111/j.1472-765X.2006.01934.x [PubMed] [CrossRef] [Google Scholar]

81. Ortiz L, Ruiz F, Pascual L, Barberis L. Effect of two probiotic strains of Lactobacillus on in vitro adherence of Listeria monocytogenes, Streptococcus agalactiae, and Staphylococcus aureus to vaginal epithelial cells. Curr Microbiol (2014) 68(6):679–84. 10.1007/s00284-014-0524-9 [PubMed] [CrossRef] [Google Scholar]

82. De Gregorio PR, Juarez Tomas MS, Leccese Terraf MC, Nader-Macias ME. In vitro and in vivo effects of beneficial vaginal lactobacilli on pathogens responsible for urogenital tract infections. J Med Microbiol (2014) 63(Pt 5):685–96. 10.1099/jmm.0.069401-0 [PubMed] [CrossRef] [Google Scholar]

83. De Gregorio PR, Juarez Tomas MS, Leccese Terraf MC, Nader-Macias ME. Preventive effect of Lactobacillus reuteri CRL1324 on Group B Streptococcus vaginal colonization in an experimental mouse model. J Appl Microbiol (2015) 118(4):1034–47. 10.1111/jam.12739 [PubMed] [CrossRef] [Google Scholar]

84. De Gregorio PR, Juarez Tomas MS, Nader-Macias ME. Immunomodulation of Lactobacillus reuteri CRL1324 on group B Streptococcus vaginal colonization in a murine experimental model. Am J Reprod Immunol (2016) 75(1):23–35. 10.1111/aji.12445 [PubMed] [CrossRef] [Google Scholar]

85. Bayo M, Berlanga M, Agut M. Vaginal microbiota in healthy pregnant women and prenatal screening of group B streptococci (GBS). Int Microbiol (2002) 5(2):87–90. 10.1007/s10123-002-0064-1 [PubMed] [CrossRef] [Google Scholar]

86. Rosen G, Randis TM, Desai PV, Sapra KJ, Ma B, Gajer P, et al. Group B Streptococcus and the vaginal microbiota. J Infect Dis (2017) 216(6):744–51. 10.1093/infdis/jix395 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Franza T, Delavenne E, Derre-Bobillot A, Juillard V, Boulay M, Demey E, et al. A partial metabolic pathway enables group B Streptococcus to overcome quinone deficiency in a host bacterial community. Mol Microbiol (2016) 102(1):81–91. 10.1111/mmi.13447 [PubMed] [CrossRef] [Google Scholar]

88. Cook LC, LaSarre B, Federle MJ. Interspecies communication among commensal and pathogenic streptococci. MBio (2013) 4(4):e00382–413. 10.1128/mBio.00382-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. MacPhee RA, Miller WL, Gloor GB, McCormick JK, Hammond JA, Burton JP, et al. Influence of the vaginal microbiota on toxic shock syndrome toxin 1 production by Staphylococcus aureus. Appl Environ Microbiol (2013) 79(6):1835–42. 10.1128/AEM.02908-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Carson HJ, Lapoint PG, Monif GR. Interrelationships within the bacterial flora of the female genital tract. Infect Dis Obstet Gynecol (1997) 5(4):303–9. 10.1155/S1064744997000525 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Ghanim N, Alchyib O, Morrish D, Tompkins D, Julliard K, Visconti E, et al. Maternal-neonatal outcome with Staphylococcus aureus rectovaginal colonization. J Reprod Med (2011) 56(9–10):421–4. [PubMed] [Google Scholar]

92. Foster-Nyarko E, Kwambana B, Aderonke O, Ceesay F, Jarju S, Bojang A, et al. Associations between nasopharyngeal carriage of group B Streptococcus and other respiratory pathogens during early infancy. BMC Microbiol (2016) 16:97. 10.1186/s12866-016-0714-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Khosa S, AlKhatib Z, Smits SH. NSR from Streptococcus agalactiae confers resistance against nisin and is encoded by a conserved nsr operon. Biol Chem (2013) 394(11):1543–9. 10.1515/hsz-2013-0167 [PubMed] [CrossRef] [Google Scholar]

94. Khosa S, Lagedroste M, Smits SH. Protein defense systems against the lantibiotic nisin: function of the immunity protein NisI and the resistance protein NSR. Front Microbiol (2016) 7:504. 10.3389/fmicb.2016.00504 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Chaisilwattana P, Monif GR. In vitro ability of the group B streptococci to inhibit Gram-positive and Gram-variable constituents of the bacterial flora of the female genital tract. Infect Dis Obstet Gynecol (1995) 3(3):91–7. 10.1155/S1064744995000391 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Beier D, Gross R. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol (2006) 9(2):143–52. 10.1016/j.mib.2006.01.005 [PubMed] [CrossRef] [Google Scholar]

97. Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev (2006) 70(4):910–38. 10.1128/MMBR.00020-06 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, et al. Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol (2002) 45(6):1499–513. 10.1046/j.1365-2958.2002.03126.x [PubMed] [CrossRef] [Google Scholar]

99. Faralla C, Metruccio MM, De Chiara M, Mu R, Patras KA, Muzzi A, et al. Analysis of two-component systems in group B Streptococcus shows that RgfAC and the novel FspSR modulate virulence and bacterial fitness. MBio (2014) 5(3):e870–814. 10.1128/mBio.00870-14 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Tettelin H, Masignani V, Cieslewicz MJ, Eisen JA, Peterson S, Wessels MR, et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A (2002) 99(19):12391–6. 10.1073/pnas.182380799 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Di Palo B, Rippa V, Santi I, Brettoni C, Muzzi A, Metruccio MM, et al. Adaptive response of group B Streptococcus to high glucose conditions: new insights on the CovRS regulation network. PLoS One (2013) 8(4):e61294. 10.1371/journal.pone.0061294 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Lembo A, Gurney MA, Burnside K, Banerjee A, de los Reyes M, Connelly JE, et al. Regulation of CovR expression in group B Streptococcus impacts blood-brain barrier penetration. Mol Microbiol (2010) 77(2):431–43. 10.1111/j.1365-2958.2010.07215.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Whidbey C, Harrell MI, Burnside K, Ngo L, Becraft AK, Iyer LM, et al. A hemolytic pigment of group B Streptococcus allows bacterial penetration of human placenta. J Exp Med (2013) 210(6):1265–81. 10.1084/jem.20122753 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Jiang SM, Ishmael N, Dunning Hotopp J, Puliti M, Tissi L, Kumar N, et al. Variation in the group B Streptococcus CsrRS regulon and effects on pathogenicity. J Bacteriol (2008) 190(6):1956–65. 10.1128/JB.01677-07 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Al Safadi R, Mereghetti L, Salloum M, Lartigue MF, Virlogeux-Payant I, Quentin R, et al. Two-component system RgfA/C activates the fbsB gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B Streptococcus. PLoS One (2011) 6(2):e14658. 10.1371/journal.pone.0014658 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Spellerberg B, Rozdzinski E, Martin S, Weber-Heynemann J, Lutticken R. rgf encodes a novel two-component signal transduction system of Streptococcus agalactiae. Infect Immun (2002) 70(5):2434–40. 10.1128/IAI.70.5.2434-2440.2002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Joubert L, Dagieu JB, Fernandez A, Derre-Bobillot A, Borezee-Durant E, Fleurot I, et al. Visualization of the role of host heme on the virulence of the heme auxotroph Streptococcus agalactiae. Sci Rep (2017) 7:40435. 10.1038/srep40435 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Quach D, van Sorge NM, Kristian SA, Bryan JD, Shelver DW, Doran KS. The CiaR response regulator in group B Streptococcus promotes intracellular survival and resistance to innate immune defenses. J Bacteriol (2009) 191(7):2023–32. 10.1128/JB.01216-08 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Mu R, Cutting AS, Del Rosario Y, Villarino N, Stewart L, Weston TA, et al. Identification of CiaR regulated genes that promote group B streptococcal virulence and interaction with brain endothelial cells. PLoS One (2016) 11(4):e0153891. 10.1371/journal.pone.0153891 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Klinzing DC, Ishmael N, Dunning Hotopp JC, Tettelin H, Shields KR, Madoff LC, et al. The two-component response regulator LiaR regulates cell wall stress responses, pili expression and virulence in group B Streptococcus. Microbiology (2013) 159(Pt 7):1521–34. 10.1099/mic.0.064444-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Poyart C, Lamy MC, Boumaila C, Fiedler F, Trieu-Cuot P. Regulation of D-alanyl-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J Bacteriol (2001) 183(21):6324–34. 10.1128/JB.183.21.6324-6334.2001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Rozhdestvenskaya AS, Totolian AA, Dmitriev AV. Inactivation of DNA-binding response regulator Sak189 abrogates beta-antigen expression and affects virulence of Streptococcus agalactiae. PLoS One (2010) 5(4):e10212. 10.1371/journal.pone.0010212 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Khosa S, Hoeppner A, Gohlke H, Schmitt L, Smits SH. Structure of the response regulator NsrR from Streptococcus agalactiae, which is involved in lantibiotic resistance. PLoS One (2016) 11(3):e0149903. 10.1371/journal.pone.0149903 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Kenzel S, Henneke P. The innate immune system and its relevance to neonatal sepsis. Curr Opin Infect Dis (2006) 19(3):264–70. 10.1097/01.qco.0000224821.27482.bd [PubMed] [CrossRef] [Google Scholar]

115. Marques MB, Kasper DL, Pangburn MK, Wessels MR. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect Immun (1992) 60(10):3986–93. [PMC free article] [PubMed] [Google Scholar]

116. Edwards MS, Kasper DL, Jennings HJ, Baker CJ, Nicholson-Weller A. Capsular sialic acid prevents activation of the alternative complement pathway by type III, group B streptococci. J Immunol (1982) 128(3):1278–83. [PubMed] [Google Scholar]

117. Takahashi S, Aoyagi Y, Adderson EE, Okuwaki Y, Bohnsack JF. Capsular sialic acid limits C5a production on type III group B streptococci. Infect Immun (1999) 67(4):1866–70. [PMC free article] [PubMed] [Google Scholar]

118. Cleary PP, Handley J, Suvorov AN, Podbielski A, Ferrieri P. Similarity between the group B and A streptococcal C5a peptidase genes. Infect Immun (1992) 60(10):4239–44. [PMC free article] [PubMed] [Google Scholar]

119. Bohnsack JF, Mollison KW, Buko AM, Ashworth JC, Hill HR. Group B streptococci inactivate complement component C5a by enzymic cleavage at the C-terminus. Biochem J (1991) 273(Pt 3):635–40. 10.1042/bj2730635 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Pietrocola G, Rindi S, Rosini R, Buccato S, Speziale P, Margarit I. The group B Streptococcus-secreted protein CIP interacts with C4, preventing C3b deposition via the lectin and classical complement pathways. J Immunol (2016) 196(1):385–94. 10.4049/jimmunol.1501954 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Areschoug T, Stalhammar-Carlemalm M, Karlsson I, Lindahl G. Streptococcal beta protein has separate binding sites for human factor H and IgA-Fc. J Biol Chem (2002) 277(15):12642–8. 10.1074/jbc.M112072200 [PubMed] [CrossRef] [Google Scholar]

122. Maruvada R, Prasadarao NV, Rubens CE. Acquisition of factor H by a novel surface protein on group B Streptococcus promotes complement degradation. FASEB J (2009) 23(11):3967–77. 10.1096/fj.09-138149 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, et al. Role of lipoteichoic acid in the phagocyte response to group B Streptococcus. J Immunol (2005) 174(10):6449–55. 10.4049/jimmunol.174.10.6449 [PubMed] [CrossRef] [Google Scholar]

124. Kolter J, Feuerstein R, Spoeri E, Gharun K, Elling R, Trieu-Cuot P, et al. Streptococci engage TLR13 on myeloid cells in a site-specific fashion. J Immunol (2016) 196(6):2733–41. 10.4049/jimmunol.1501014 [PubMed] [CrossRef] [Google Scholar]

125. Mancuso G, Gambuzza M, Midiri A, Biondo C, Papasergi S, Akira S, et al. Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol (2009) 10(6):587–94. 10.1038/ni.1733 [PubMed] [CrossRef] [Google Scholar]

126. Signorino G, Mohammadi N, Patane F, Buscetta M, Venza M, Venza I, et al. Role of toll-like receptor 13 in innate immune recognition of group B streptococci. Infect Immun (2014) 82(12):5013–22. 10.1128/IAI.02282-14 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Henneke P, Takeuchi O, Malley R, Lien E, Ingalls RR, Freeman MW, et al. Cellular activation, phagocytosis, and bactericidal activity against group B Streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J Immunol (2002) 169(7):3970–7. 10.4049/jimmunol.169.7.3970 [PubMed] [CrossRef] [Google Scholar]

128. Deshmukh SD, Kremer B, Freudenberg M, Bauer S, Golenbock DT, Henneke P. Macrophages recognize streptococci through bacterial single-stranded RNA. EMBO Rep (2011) 12(1):71–6. 10.1038/embor.2010.189 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Mancuso G, Midiri A, Beninati C, Biondo C, Galbo R, Akira S, et al. Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J Immunol (2004) 172(10):6324–9. 10.4049/jimmunol.172.10.6324 [PubMed] [CrossRef] [Google Scholar]

130. Lemire P, Calzas C, Segura M. The NOD2 receptor does not play a major role in the pathogenesis of Group B Streptococcus in mice. Microb Pathog (2013) 65:41–7. 10.1016/j.micpath.2013.09.006 [PubMed] [CrossRef] [Google Scholar]

131. Lemire P, Roy D, Fittipaldi N, Okura M, Takamatsu D, Bergman E, et al. Implication of TLR- but not of NOD2-signaling pathways in dendritic cell activation by group B Streptococcus serotypes III and V. PLoS One (2014) 9(12):e113940. 10.1371/journal.pone.0113940 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Wessels MR, Rubens CE, Benedi VJ, Kasper DL. Definition of a bacterial virulence factor: sialylation of the group B streptococcal capsule. Proc Natl Acad Sci U S A (1989) 86(22):8983–7. 10.1073/pnas.86.22.8983 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Carlin AF, Lewis AL, Varki A, Nizet V. Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol (2007) 189(4):1231–7. 10.1128/JB.01155-06 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood (2009) 113(14):3333–6. 10.1182/blood-2008-11-187302 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, et al. Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med (2009) 206(8):1691–9. 10.1084/jem.20090691 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Chang YC, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, et al. Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog (2014) 10(1):e1003846. 10.1371/journal.ppat.1003846 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Ali SR, Fong JJ, Carlin AF, Busch TD, Linden R, Angata T, et al. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med (2014) 211(6):1231–42. 10.1084/jem.20131853 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Chang YC, Nizet V. The interplay between Siglecs and sialylated pathogens. Glycobiology (2014) 24(9):818–25. 10.1093/glycob/cwu067 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Saito M, Yamamoto S, Ozaki K, Tomioka Y, Suyama H, Morimatsu M, et al. A soluble form of Siglec-9 provides a resistance against group B Streptococcus (GBS) infection in transgenic mice. Microb Pathog (2016) 99:106–10. 10.1016/j.micpath.2016.08.014 [PubMed] [CrossRef] [Google Scholar]

140. Lemire P, Houde M, Lecours MP, Fittipaldi N, Segura M. Role of capsular polysaccharide in group B Streptococccus interactions with dendritic cells. Microbes Infect (2012) 14(12):1064–76. 10.1016/j.micinf.2012.05.015 [PubMed] [CrossRef] [Google Scholar]

141. De Francesco MA, Gargiulo F, Negrini R, Gelmi M, Manca N. Different sequence strains of Streptococcus agalactiae elicit various levels of cytokine production. Immunol Invest (2008) 37(8):741–51. 10.1080/08820130802403283 [PubMed] [CrossRef] [Google Scholar]

142. Mikamo H, Johri AK, Paoletti LC, Madoff LC, Onderdonk AB. Adherence to, invasion by, and cytokine production in response to serotype VIII group B Streptococci. Infect Immun (2004) 72(8):4716–22. 10.1128/IAI.72.8.4716-4722.2004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Ulett GC, Webb RI, Ulett KB, Cui X, Benjamin WH, Crowley M, et al. Group B Streptococcus (GBS) urinary tract infection involves binding of GBS to bladder uroepithelium and potent but GBS-specific induction of interleukin 1alpha. J Infect Dis (2010) 201(6):866–70. 10.1086/650696 [PubMed] [CrossRef] [Google Scholar]

144. Doran KS, Liu GY, Nizet V. Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest (2003) 112(5):736–44. 10.1172/JCI17335 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Stoner TD, Weston TA, Trejo J, Doran KS. Group B streptococcal infection and activation of human astrocytes. PLoS One (2015) 10(6):e0128431. 10.1371/journal.pone.0128431 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Beyrich C, Loffler J, Kobsar A, Speer CP, Kneitz S, Eigenthaler M. Infection of human coronary artery endothelial cells by group B Streptococcus contributes to dysregulation of apoptosis, hemostasis, and innate immune responses. Mediators Inflamm (2011) 2011:971502. 10.1155/2011/971502 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Puliti M, Von Hunolstein C, Verwaerde C, Bistoni F, Orefici G, Tissi L. Regulatory role of interleukin-10 in experimental group B streptococcal arthritis. Infect Immun (2002) 70(6):2862–8. 10.1128/IAI.70.6.2862-2868.2002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Rosati E, Fettucciari K, Scaringi L, Cornacchione P, Sabatini R, Mezzasoma L, et al. Cytokine response to group B Streptococcus infection in mice. Scand J Immunol (1998) 47(4):314–23. 10.1046/j.1365-3083.1998.00305.x [PubMed] [CrossRef] [Google Scholar]

149. Ernst W, Zimara N, Hanses F, Mannel DN, Seelbach-Gobel B, Wege AK. Humanized mice, a new model to study the influence of drug treatment on neonatal sepsis. Infect Immun (2013) 81(5):1520–31. 10.1128/IAI.01235-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Teti G, Mancuso G, Tomasello F. Cytokine appearance and effects of anti-tumor necrosis factor alpha antibodies in a neonatal rat model of group B streptococcal infection. Infect Immun (1993) 61(1):227–35. [PMC free article] [PubMed] [Google Scholar]

151. Biondo C, Mancuso G, Midiri A, Signorino G, Domina M, Lanza Cariccio V, et al. The interleukin-1beta/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun (2014) 82(11):4508–17. 10.1128/IAI.02104-14 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Biondo C, Mancuso G, Midiri A, Signorino G, Domina M, Lanza Cariccio V, et al. Essential role of interleukin-1 signaling in host defenses against group B Streptococcus. MBio (2014) 5(5):e1428–1414. 10.1128/mBio.01428-14 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Mohammadi N, Midiri A, Mancuso G, Patane F, Venza M, Venza I, et al. Neutrophils directly recognize group B streptococci and contribute to interleukin-1β production during infection. PLoS One (2016) 11(8):e0160249. 10.1371/journal.pone.0160249 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Cusumano V, Mancuso G, Genovese F, Delfino D, Beninati C, Losi E, et al. Role of gamma interferon in a neonatal mouse model of group B streptococcal disease. Infect Immun (1996) 64(8):2941–4. [PMC free article] [PubMed] [Google Scholar]

155. Mancuso G, Cusumano V, Genovese F, Gambuzza M, Beninati C, Teti G. Role of interleukin 12 in experimental neonatal sepsis caused by group B streptococci. Infect Immun (1997) 65(9):3731–5. [PMC free article] [PubMed] [Google Scholar]

156. Cusumano V, Midiri A, Cusumano VV, Bellantoni A, De Sossi G, Teti G, et al. Interleukin-18 is an essential element in host resistance to experimental group B streptococcal disease in neonates. Infect Immun (2004) 72(1):295–300. 10.1128/IAI.72.1.295-300.2004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Andrade EB, Alves J, Madureira P, Oliveira L, Ribeiro A, Cordeiro-da-Silva A, et al. TLR2-induced IL-10 production impairs neutrophil recruitment to infected tissues during neonatal bacterial sepsis. J Immunol (2013) 191(9):4759–68. 10.4049/jimmunol.1301752 [PubMed] [CrossRef] [Google Scholar]

158. Madureira P, Andrade EB, Gama B, Oliveira L, Moreira S, Ribeiro A, et al. Inhibition of IL-10 production by maternal antibodies against group B Streptococcus GAPDH confers immunity to offspring by favoring neutrophil recruitment. PLoS Pathog (2011) 7(11):e1002363. 10.1371/journal.ppat.1002363 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Bryan JD, Shelver DW. Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. J Bacteriol (2009) 191(6):1847–54. 10.1128/JB.01124-08 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Gupta R, Ghosh S, Monks B, DeOliveira RB, Tzeng TC, Kalantari P, et al. RNA and beta-hemolysin of group B Streptococcus induce interleukin-1beta (IL-1beta) by activating NLRP3 inflammasomes in mouse macrophages. J Biol Chem (2014) 289(20):13701–5. 10.1074/jbc.C114.548982 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Bebien M, Hensler ME, Davanture S, Hsu LC, Karin M, Park JM, et al. The pore-forming toxin beta hemolysin/cytolysin triggers p38 MAPK-dependent IL-10 production in macrophages and inhibits innate immunity. PLoS Pathog (2012) 8(7):e1002812. 10.1371/journal.ppat.1002812 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Madureira P, Baptista M, Vieira M, Magalhaes V, Camelo A, Oliveira L, et al. Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J Immunol (2007) 178(3):1379–87. 10.4049/jimmunol.178.3.1379 [PubMed] [CrossRef] [Google Scholar]

163. La Pine TR, Joyner JL, Augustine NH, Kwak SD, Hill HR. Defective production of IL-18 and IL-12 by cord blood mononuclear cells influences the T helper-1 interferon gamma response to group B streptococci. Pediatr Res (2003) 54(2):276–81. 10.1203/01.PDR.0000072515.10652.87 [PubMed] [CrossRef] [Google Scholar]

164. Kwatra G, Adrian PV, Shiri T, Izu A, Cutland CL, Buchmann EJ, et al. Serotype-specific cell-mediated immunity associated with clearance of homotypic group B Streptococcus rectovaginal colonization in pregnant women. J Infect Dis (2016) 213(12):1923–6. 10.1093/infdis/jiw056 [PubMed] [CrossRef] [Google Scholar]

165. Clarke D, Letendre C, Lecours MP, Lemire P, Galbas T, Thibodeau J, et al. Group B Streptococcus induces a robust IFN-gamma response by CD4(+) T cells in an in vitro and in vivo model. J Immunol Res (2016) 2016:5290604. 10.1155/2016/5290604 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Smith JM, Respess RH, Chaffin DG, Larsen B, Jackman SH. Differences in innate immunologic response to group B Streptococcus between colonized and noncolonized women. Infect Dis Obstet Gynecol (2001) 9(3):125–32. 10.1155/S1064744901000230 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Hordnes K, Tynning T, Kvam AI, Jonsson R, Haneberg B. Colonization in the rectum and uterine cervix with group B streptococci may induce specific antibody responses in cervical secretions of pregnant women. Infect Immun (1996) 64(5):1643–52. [PMC free article] [PubMed] [Google Scholar]

168. Mitchell K, Brou L, Bhat G, Drobek CO, Kramer M, Hill A, et al. Group B Streptococcus colonization and higher maternal IL-1beta concentrations are associated with early term births. J Matern Fetal Neonatal Med (2013) 26(1):56–61. 10.3109/14767058.2012.725789 [PubMed] [CrossRef] [Google Scholar]

169. Scholl J, Nasioudis D, Boester A, Speleotes M, Grunebaum A, Witkin SS. Group B Streptococcus alters properties of vaginal epithelial cells in pregnant women. Am J Obstet Gynecol (2016) 214(3):383.e1–5. 10.1016/j.ajog.2015.12.053 [PubMed] [CrossRef] [Google Scholar]

170. Hordnes K, Digranes A, Haugen IL, Helland DE, Ulstein M, Jonsson R, et al. Systemic and mucosal antibody responses to group B streptococci following immunization of the colonic-rectal mucosa. J Reprod Immunol (1995) 28(3):247–62. 10.1016/0165-0378(95)00925-B [PubMed] [CrossRef] [Google Scholar]

171. Gendrin C, Vornhagen J, Ngo L, Whidbey C, Boldenow E, Santana-Ufret V, et al. Mast cell degranulation by a hemolytic lipid toxin decreases GBS colonization and infection. Sci Adv (2015) 1(6):e1400225. 10.1126/sciadv.1400225 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Randis TM, Gelber SE, Hooven TA, Abellar RG, Akabas LH, Lewis EL, et al. Group B Streptococcus beta-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J Infect Dis (2014) 210(2):265–73. 10.1093/infdis/jiu067 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Boldenow E, Hassan I, Chames MC, Xi C, Loch-Caruso R. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine but not trichloroacetate inhibits pathogen-stimulated TNF-alpha in human extraplacental membranes in vitro. Reprod Toxicol (2015) 52:1–6. 10.1016/j.reprotox.2015.01.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Boldenow E, Jones S, Lieberman RW, Chames MC, Aronoff DM, Xi C, et al. Antimicrobial peptide response to group B Streptococcus in human extraplacental membranes in culture. Placenta (2013) 34(6):480–5. 10.1016/j.placenta.2013.02.010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Zaga-Clavellina V, Flores-Espinosa P, Pineda-Torres M, Sosa-Gonzalez I, Vega-Sanchez R, Estrada-Gutierrez G, et al. Tissue-specific IL-10 secretion profile from term human fetal membranes stimulated with pathogenic microorganisms associated with preterm labor in a two-compartment tissue culture system. J Matern Fetal Neonatal Med (2014) 27(13):1320–7. 10.3109/14767058.2013.857397 [PubMed] [CrossRef] [Google Scholar]

176. Gravett MG, Witkin SS, Haluska GJ, Edwards JL, Cook MJ, Novy MJ. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol (1994) 171(6):1660–7. 10.1016/0002-9378(94)90418-9 [PubMed] [CrossRef] [Google Scholar]

177. Adams Waldorf KM, Gravett MG, McAdams RM, Paolella LJ, Gough GM, Carl DJ, et al. Choriodecidual group B streptococcal inoculation induces fetal lung injury without intra-amniotic infection and preterm labor in Macaca nemestrina. PLoS One (2011) 6(12):e28972. 10.1371/journal.pone.0028972 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Vanderhoeven JP, Bierle CJ, Kapur RP, McAdams RM, Beyer RP, Bammler TK, et al. Group B streptococcal infection of the choriodecidua induces dysfunction of the cytokeratin network in amniotic epithelium: a pathway to membrane weakening. PLoS Pathog (2014) 10(3):e1003920. 10.1371/journal.ppat.1003920 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Whidbey C, Vornhagen J, Gendrin C, Boldenow E, Samson JM, Doering K, et al. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury. EMBO Mol Med (2015) 7(4):488–505. 10.15252/emmm.201404883 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Boldenow E, Gendrin C, Ngo L, Bierle C, Vornhagen J, Coleman M, et al. Group B Streptococcus circumvents neutrophils and neutrophil extracellular traps during amniotic cavity invasion and preterm labor. Sci Immunol (2016) 1(4):eaah4576. 10.1126/sciimmunol.aah4576 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Bergeron J, Gerges N, Guiraut C, Grbic D, Allard MJ, Fortier LC, et al. Activation of the IL-1beta/CXCL1/MMP-10 axis in chorioamnionitis induced by inactivated Group B Streptococcus. Placenta (2016) 47:116–23. 10.1016/j.placenta.2016.09.016 [PubMed] [CrossRef] [Google Scholar]

182. Deutscher M, Lewis M, Zell ER, Taylor TH, Jr, Van Beneden C, Schrag S, et al. Incidence and severity of invasive Streptococcus pneumoniae, group A Streptococcus, and group B Streptococcus infections among pregnant and postpartum women. Clin Infect Dis (2011) 53(2):114–23. 10.1093/cid/cir325 [PubMed] [CrossRef] [Google Scholar]

183. Bergeron JD, Deslauriers J, Grignon S, Fortier LC, Lepage M, Stroh T, et al. White matter injury and autistic-like behavior predominantly affecting male rat offspring exposed to group B streptococcal maternal inflammation. Dev Neurosci (2013) 35(6):504–15. 10.1159/000355656 [PubMed] [CrossRef] [Google Scholar]

184. Allard MJ, Bergeron JD, Baharnoori M, Srivastava LK, Fortier LC, Poyart C, et al. A sexually dichotomous, autistic-like phenotype is induced by group B Streptococcus maternofetal immune activation. Autism Res (2017) 10(2):233–45. 10.1002/aur.1647 [PubMed] [CrossRef] [Google Scholar]

185. Jensen NE, Andersen BL. The prevalence of group B streptococci in human urogenital secretions. Scand J Infect Dis (1979) 11(3):199–202. 10.3109/inf.1979.11.issue-3.04 [PubMed] [CrossRef] [Google Scholar]

186. Honig E, Mouton JW, van der Meijden WI. Can group B streptococci cause symptomatic vaginitis? Infect Dis Obstet Gynecol (1999) 7(4):206–9. 10.1155/S1064744999000368 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Feikin DR, Thorsen P, Zywicki S, Arpi M, Westergaard JG, Schuchat A. Association between colonization with group B streptococci during pregnancy and preterm delivery among Danish women. Am J Obstet Gynecol (2001) 184(3):427–33. 10.1067/mob.2001.109936 [PubMed] [CrossRef] [Google Scholar]

188. Regan JA, Klebanoff MA, Nugent RP, Eschenbach DA, Blackwelder WC, Lou Y, et al. Colonization with group B streptococci in pregnancy and adverse outcome. VIP Study Group. Am J Obstet Gynecol (1996) 174(4):1354–60. 10.1016/S0002-9378(96)70684-1 [PubMed] [CrossRef] [Google Scholar]

189. Regan JA, Chao S, James LS. Premature rupture of membranes, preterm delivery, and group B streptococcal colonization of mothers. Am J Obstet Gynecol (1981) 141(2):184–6. 10.1016/S0002-9378(16)32589-3 [PubMed] [CrossRef] [Google Scholar]

190. Matorras R, Garcia Perea A, Omenaca F, Usandizaga JA, Nieto A, Herruzo R. Group B Streptococcus and premature rupture of membranes and preterm delivery. Gynecol Obstet Invest (1989) 27(1):14–8. 10.1159/000293607 [PubMed] [CrossRef] [Google Scholar]

191. Valkenburg-van den Berg AW, Sprij AJ, Dekker FW, Dorr PJ, Kanhai HH. Association between colonization with group B Streptococcus and preterm delivery: a systematic review. Acta Obstet Gynecol Scand (2009) 88(9):958–67. 10.1080/00016340903176800 [PubMed] [CrossRef] [Google Scholar]

192. Muller AE, Oostvogel PM, Steegers EA, Dorr PJ. Morbidity related to maternal group B streptococcal infections. Acta Obstet Gynecol Scand (2006) 85(9):1027–37. 10.1080/00016340600780508 [PubMed] [CrossRef] [Google Scholar]

193. Yancey MK, Duff P, Clark P, Kurtzer T, Frentzen BH, Kubilis P. Peripartum infection associated with vaginal group B streptococcal colonization. Obstet Gynecol (1994) 84(5):816–9. [PubMed] [Google Scholar]

194. Krohn MA, Hillier SL, Baker CJ. Maternal peripartum complications associated with vaginal group B streptococci colonization. J Infect Dis (1999) 179(6):1410–5. 10.1086/314756 [PubMed] [CrossRef] [Google Scholar]

195. Nan C, Dangor Z, Cutland CL, Edwards MS, Madhi SA, Cunnington MC. Maternal group B Streptococcus-related stillbirth: a systematic review. BJOG (2015) 122(11):1437–45. 10.1111/1471-0528.13527 [PubMed] [CrossRef] [Google Scholar]

196. Prince AL, Ma J, Kannan PS, Alvarez M, Gisslen T, Harris RA, et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol (2016) 214(5):627.e1–16. 10.1016/j.ajog.2016.01.193 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Vornhagen J, Quach P, Boldenow E, Merillat S, Whidbey C, Ngo LY, et al. Bacterial hyaluronidase promotes ascending GBS infection and preterm birth. MBio (2016) 7(3):e00781–16. 10.1128/mBio.00781-16 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Kline KA, Lewis AL. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr (2016) 4(2):UTI-0012–2012. 10.1128/microbiolspec.UTI-0012-2012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Ulett KB, Benjamin WH, Jr, Zhuo F, Xiao M, Kong F, Gilbert GL, et al. Diversity of group B Streptococcus serotypes causing urinary tract infection in adults. J Clin Microbiol (2009) 47(7):2055–60. 10.1128/JCM.00154-09 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Wood EG, Dillon HC, Jr. A prospective study of group B streptococcal bacteriuria in pregnancy. Am J Obstet Gynecol (1981) 140(5):515–20. 10.1016/0002-9378(81)90226-X [PubMed] [CrossRef] [Google Scholar]

201. Hill JB, Sheffield JS, McIntire DD, Wendel GD, Jr. Acute pyelonephritis in pregnancy. Obstet Gynecol (2005) 105(1):18–23. 10.1097/01.AOG.0000149154.96285.a0 [PubMed] [CrossRef] [Google Scholar]

202. Kessous R, Weintraub AY, Sergienko R, Lazer T, Press F, Wiznitzer A, et al. Bacteruria with group-B Streptococcus: is it a risk factor for adverse pregnancy outcomes? J Matern Fetal Neonatal Med (2012) 25(10):1983–6. 10.3109/14767058.2012.671872 [PubMed] [CrossRef] [Google Scholar]

203. Perez-Moreno MO, Pico-Plana E, Grande-Armas J, Centelles-Serrano MJ, Arasa-Subero M, Ochoa NC, et al. Group B streptococcal bacteriuria during pregnancy as a risk factor for maternal intrapartum colonization: a prospective cohort study. J Med Microbiol (2017) 66(4):454–60. 10.1099/jmm.0.000465 [PubMed] [CrossRef] [Google Scholar]

204. Haider G, Zehra N, Munir AA, Haider A. Risk factors of urinary tract infection in pregnancy. J Pak Med Assoc (2010) 60(3):213–6. [PubMed] [Google Scholar]

205. Kline KA, Schwartz DJ, Gilbert NM, Lewis AL. Impact of host age and parity on susceptibility to severe urinary tract infection in a murine model. PLoS One (2014) 9(5):e97798. 10.1371/journal.pone.0097798 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Kulkarni R, Randis TM, Antala S, Wang A, Amaral FE, Ratner AJ. β-Hemolysin/cytolysin of group B Streptococcus enhances host inflammation but is dispensable for establishment of urinary tract infection. PLoS One (2013) 8(3):e59091. 10.1371/journal.pone.0059091 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Leclercq SY, Sullivan MJ, Ipe DS, Smith JP, Cripps AW, Ulett GC. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and beta-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence. Sci Rep (2016) 6:29000. 10.1038/srep29000 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

208. Kubin V, Mrastikova H, Paulova M, Motlova J, Franek J. Group B streptococci in the milk of lactating mothers. Zentralbl Bakteriol Mikrobiol Hyg A (1987) 265(1–2):210–7. [PubMed] [Google Scholar]

209. Kvist LJ, Larsson BW, Hall-Lord ML, Steen A, Schalen C. The role of bacteria in lactational mastitis and some considerations of the use of antibiotic treatment. Int Breastfeed J (2008) 3:6. 10.1186/1746-4358-3-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Andreas NJ, Al-Khalidi A, Jaiteh M, Clarke E, Hyde MJ, Modi N, et al. Role of human milk oligosaccharides in group B Streptococcus colonisation. Clin Transl Immunology (2016) 5(8):e99. 10.1038/cti.2016.43 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Le Doare K, Kampmann B. Breast milk and group B streptococcal infection: vector of transmission or vehicle for protection? Vaccine (2014) 32(26):3128–32. 10.1016/j.vaccine.2014.04.020 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Zimmermann P, Gwee A, Curtis N. The controversial role of breast milk in GBS late-onset disease. J Infect (2017) 74(Suppl 1):S34–40. 10.1016/S0163-4453(17)30189-5 [PubMed] [CrossRef] [Google Scholar]

213. Boggess KA, Watts DH, Hillier SL, Krohn MA, Benedetti TJ, Eschenbach DA. Bacteremia shortly after placental separation during cesarean delivery. Obstet Gynecol (1996) 87(5 Pt 1):779–84. 10.1016/0029-7844(96)00037-3 [PubMed] [CrossRef] [Google Scholar]

214. Hall RT, Barnes W, Krishnan L, Harris DJ, Rhodes PG, Fayez J, et al. Antibiotic treatment of parturient women colonized with group B streptococci. Am J Obstet Gynecol (1976) 124(6):630–4. 10.1016/0002-9378(76)90065-X [PubMed] [CrossRef] [Google Scholar]

215. Gardner SE, Yow MD, Leeds LJ, Thompson PK, Mason EO, Jr, Clark DJ. Failure of penicillin to eradicate group B streptococcal colonization in the pregnant woman. A couple study. Am J Obstet Gynecol (1979) 135(8):1062–5. 10.1016/0002-9378(79)90737-3 [PubMed] [CrossRef] [Google Scholar]

216. Szymusik I, Kosinska-Kaczynska K, Krolik A, Skurnowicz M, Pietrzak B, Wielgos M. The usefulness of the universal culture-based screening and the efficacy of intrapartum prophylaxis of group B Streptococcus infection. J Matern Fetal Neonatal Med (2014) 27(9):968–70. 10.3109/14767058.2013.845659 [PubMed] [CrossRef] [Google Scholar]

217. Gilbert GL, Hewitt MC, Turner CM, Leeder SR. Compliance with protocols for prevention of neonatal group B streptococcal sepsis: practicalities and limitations. Infect Dis Obstet Gynecol (2003) 11(1):1–9. 10.1155/S1064744903000012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. Scasso S, Laufer J, Rodriguez G, Alonso JG, Sosa CG. Vaginal group B Streptococcus status during intrapartum antibiotic prophylaxis. Int J Gynaecol Obstet (2015) 129(1):9–12. 10.1016/j.ijgo.2014.10.018 [PubMed] [CrossRef] [Google Scholar]

219. Fairlie T, Zell ER, Schrag S. Effectiveness of intrapartum antibiotic prophylaxis for prevention of early-onset group B streptococcal disease. Obstet Gynecol (2013) 121(3):570–7. 10.1097/AOG.0b013e318280d4f6 [PubMed] [CrossRef] [Google Scholar]

220. Turrentine M. Intrapartum antibiotic prophylaxis for group B Streptococcus: has the time come to wait more than 4 hours? Am J Obstet Gynecol (2014) 211(1):15–7. 10.1016/j.ajog.2013.12.010 [PubMed] [CrossRef] [Google Scholar]

221. Berardi A, Rossi C, Creti R, China M, Gherardi G, Venturelli C, et al. Group B streptococcal colonization in 160 mother-baby pairs: a prospective cohort study. J Pediatr (2013) 163(4):1099–104.e1. 10.1016/j.jpeds.2013.05.064 [PubMed] [CrossRef] [Google Scholar]

222. Toyofuku M, Morozumi M, Hida M, Satoh Y, Sakata H, Shiro H, et al. Effects of intrapartum antibiotic prophylaxis on neonatal acquisition of group B streptococci. J Pediatr (2017) 190:169–73.e1. 10.1016/j.jpeds.2017.07.039 [PubMed] [CrossRef] [Google Scholar]

223. Spaetgens R, DeBella K, Ma D, Robertson S, Mucenski M, Davies HD. Perinatal antibiotic usage and changes in colonization and resistance rates of group B Streptococcus and other pathogens. Obstet Gynecol (2002) 100(3):525–33. 10.1097/00006250-200209000-00020 [PubMed] [CrossRef] [Google Scholar]

224. Stoll BJ, Hansen NI, Sanchez PJ, Faix RG, Poindexter BB, Van Meurs KP, et al. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics (2011) 127(5):817–26. 10.1542/peds.2010-2217 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

225. Weston EJ, Pondo T, Lewis MM, Martell-Cleary P, Morin C, Jewell B, et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008. Pediatr Infect Dis J (2011) 30(11):937–41. 10.1097/INF.0b013e318223bad2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Bauserman MS, Laughon MM, Hornik CP, Smith PB, Benjamin DK, Jr, Clark RH, et al. Group B Streptococcus and Escherichia coli infections in the intensive care nursery in the era of intrapartum antibiotic prophylaxis. Pediatr Infect Dis J (2013) 32(3):208–12. 10.1097/INF.0b013e318275058a [PMC free article] [PubMed] [CrossRef] [Google Scholar]

227. Centers for Disease Control and Prevention (CDC). Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Group B Streptococcus, 2014. (2014). Report No gbs14. Centers for Disease Control and Prevention. [Google Scholar]

228. Levine EM, Ghai V, Barton JJ, Strom CM. Intrapartum antibiotic prophylaxis increases the incidence of Gram-negative neonatal sepsis. Infect Dis Obstet Gynecol (1999) 7(4):210–3. 10.1155/S106474499900037X [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Terrone DA, Rinehart BK, Einstein MH, Britt LB, Martin JN, Jr, Perry KG. Neonatal sepsis and death caused by resistant Escherichia coli: possible consequences of extended maternal ampicillin administration. Am J Obstet Gynecol (1999) 180(6 Pt 1):1345–8. 10.1016/S0002-9378(99)70017-7 [PubMed] [CrossRef] [Google Scholar]

230. Ecker KL, Donohue PK, Kim KS, Shepard JA, Aucott SW. The impact of group B Streptococcus prophylaxis on early onset neonatal infections. J Neonatal Perinatal Med (2013) 6(1):37–44. 10.3233/NPM-1363312 [PubMed] [CrossRef] [Google Scholar]

231. Keski-Nisula L, Kyynarainen HR, Karkkainen U, Karhukorpi J, Heinonen S, Pekkanen J. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth. Acta Paediatr (2013) 102(5):480–5. 10.1111/apa.12186 [PubMed] [CrossRef] [Google Scholar]

232. Aloisio I, Mazzola G, Corvaglia LT, Tonti G, Faldella G, Biavati B, et al. Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifidobacterium strains. Appl Microbiol Biotechnol (2014) 98(13):6051–60. 10.1007/s00253-014-5712-9 [PubMed] [CrossRef] [Google Scholar]

233. Corvaglia L, Tonti G, Martini S, Aceti A, Mazzola G, Aloisio I, et al. Influence of intrapartum antibiotic prophylaxis for group B Streptococcus on gut microbiota in the first month of life. J Pediatr Gastroenterol Nutr (2016) 62(2):304–8. 10.1097/MPG.0000000000000928 [PubMed] [CrossRef] [Google Scholar]

234. Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG (2016) 123(6):983–93. 10.1111/1471-0528.13601 [PubMed] [CrossRef] [Google Scholar]

235. Cassidy-Bushrow AE, Sitarik A, Levin AM, Lynch SV, Havstad S, Ownby DR, et al. Maternal group B Streptococcus and the infant gut microbiota. J Dev Orig Health Dis (2016) 7(1):45–53. 10.1017/S2040174415001361 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Dinsmoor MJ, Viloria R, Lief L, Elder S. Use of intrapartum antibiotics and the incidence of postnatal maternal and neonatal yeast infections. Obstet Gynecol (2005) 106(1):19–22. 10.1097/01.AOG.0000164049.12159.bd [PubMed] [CrossRef] [Google Scholar]

237. Roesch LF, Silveira RC, Corso AL, Dobbler PT, Mai V, Rojas BS, et al. Diversity and composition of vaginal microbiota of pregnant women at risk for transmitting group B Streptococcus treated with intrapartum penicillin. PLoS One (2017) 12(2):e0169916. 10.1371/journal.pone.0169916 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

238. Kenyon S, Pike K, Jones DR, Brocklehurst P, Marlow N, Salt A, et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-year follow-up of the ORACLE II trial. Lancet (2008) 372(9646):1319–27. 10.1016/S0140-6736(08)61203-9 [PubMed] [CrossRef] [Google Scholar]

239. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics (2015) 135(4):617–26. 10.1542/peds.2014-3407 [PubMed] [CrossRef] [Google Scholar]

240. Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes (Lond) (2015) 39(4):665–70. 10.1038/ijo.2014.180 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

241. McCloskey K, Vuillermin P, Carlin JB, Cheung M, Skilton MR, Tang ML, et al. Perinatal microbial exposure may influence aortic intima-media thickness in early infancy. Int J Epidemiol (2017) 46(1):209–18. 10.1093/ije/dyw042 [PubMed] [CrossRef] [Google Scholar]

242. Chu S, Yu H, Chen Y, Chen Q, Wang B, Zhang J. Periconceptional and gestational exposure to antibiotics and childhood asthma. PLoS One (2015) 10(10):e0140443. 10.1371/journal.pone.0140443 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Bjorksten B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol (2001) 108(4):516–20. 10.1067/mai.2001.118130 [PubMed] [CrossRef] [Google Scholar]

244. Dowhower Karpa K, Paul IM, Leckie JA, Shung S, Carkaci-Salli N, Vrana KE, et al. A retrospective chart review to identify perinatal factors associated with food allergies. Nutr J (2012) 11:87. 10.1186/1475-2891-11-87 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

245. Seedat F, Stinton C, Patterson J, Geppert J, Tan B, Robinson ER, et al. Adverse events in women and children who have received intrapartum antibiotic prophylaxis treatment: a systematic review. BMC Pregnancy Childbirth (2017) 17(1):247. 10.1186/s12884-017-1432-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

246. Schrag SJ, Verani JR. Intrapartum antibiotic prophylaxis for the prevention of perinatal group B streptococcal disease: experience in the United States and implications for a potential group B streptococcal vaccine. Vaccine (2013) 31(Suppl 4):D20–6. 10.1016/j.vaccine.2012.11.056 [PubMed] [CrossRef] [Google Scholar]

247. Ohlsson A, Shah VS. Intrapartum antibiotics for known maternal group B streptococcal colonization. Cochrane Database Syst Rev (2014) 6:CD007467. 10.1002/14651858.CD007467.pub4 [PubMed] [CrossRef] [Google Scholar]

248. Baker CJ, Kasper DL. Group B streptococcal vaccines. Rev Infect Dis (1985) 7(4):458–67. 10.1093/clinids/7.4.458 [PubMed] [CrossRef] [Google Scholar]

249. Brzychczy-Wloch M, Gorska S, Brzozowska E, Gamian A, Heczko PB, Bulanda M. Identification of high immunoreactive proteins from Streptococcus agalactiae isolates recognized by human serum antibodies. FEMS Microbiol Lett (2013) 349(1):61–70. 10.1111/1574-6968.12292 [PubMed] [CrossRef] [Google Scholar]

250. Lin FY, Weisman LE, Azimi PH, Philips JB, III, Clark P, Regan J, et al. Level of maternal IgG anti-group B Streptococcus type III antibody correlated with protection of neonates against early-onset disease caused by this pathogen. J Infect Dis (2004) 190(5):928–34. 10.1086/422756 [PubMed] [CrossRef] [Google Scholar]

251. Baker JA, Lewis EL, Byland LM, Bonakdar M, Randis TM, Ratner AJ. Mucosal vaccination promotes clearance of Streptococcus agalactiae vaginal colonization. Vaccine (2017) 35(9):1273–80. 10.1016/j.vaccine.2017.01.029 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

252. Edwards MS, Hall MA, Rench MA, Baker CJ. Patterns of immune response among survivors of group B streptococcal meningitis. J Infect Dis (1990) 161(1):65–70. 10.1093/infdis/161.1.65 [PubMed] [CrossRef] [Google Scholar]

253. Baker CJ. The spectrum of perinatal group B streptococcal disease. Vaccine (2013) 31(Suppl 4):D3–6. 10.1016/j.vaccine.2013.02.030 [PubMed] [CrossRef] [Google Scholar]

254. Madhi SA, Dangor Z, Heath PT, Schrag S, Izu A, Sobanjo-Ter Meulen A, et al. Considerations for a phase-III trial to evaluate a group B Streptococcus polysaccharide-protein conjugate vaccine in pregnant women for the prevention of early- and late-onset invasive disease in young-infants. Vaccine (2013) 31(Suppl 4):D52–7. 10.1016/j.vaccine.2013.02.029 [PubMed] [CrossRef] [Google Scholar]

255. Madhi SA, Koen A, Cutland CL, Jose L, Govender N, Wittke F, et al. Antibody kinetics and response to routine vaccinations ininfants born to women who received an investigational trivalent group B Streptococcus polysaccharide CRM197-conjugate vaccine during pregnancy. Clin Infect Dis (2017) 65(11):1897–904. 10.1093/cid/cix666 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

256. Le Doare K, Faal A, Jaiteh M, Sarfo F, Taylor S, Warburton F, et al. Association between functional antibody against group B Streptococcus and maternal and infant colonization in a Gambian cohort. Vaccine (2017) 35(22):2970–8. 10.1016/j.vaccine.2017.04.013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

257. Springman AC, Lacher DW, Waymire EA, Wengert SL, Singh P, Zadoks RN, et al. Pilus distribution among lineages of group B Streptococcus: an evolutionary and clinical perspective. BMC Microbiol (2014) 14:159. 10.1186/1471-2180-14-159 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

258. Lin SM, Jang AY, Zhi Y, Gao S, Lim S, Lim JH, et al. Immunization with a latch peptide provides serotype-independent protection against group B Streptococcus infection in mice. J Infect Dis (2017) 217(1):93–102. 10.1093/infdis/jix565 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

259. Li J, Kasper DL, Ausubel FM, Rosner B, Michel JL. Inactivation of the alpha C protein antigen gene, bca, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B Streptococcus. Proc Natl Acad Sci U S A (1997) 94(24):13251–6. 10.1073/pnas.94.24.13251 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

260. Xue G, Yu L, Li S, Shen X. Intranasal immunization with GBS surface protein Sip and ScpB induces specific mucosal and systemic immune responses in mice. FEMS Immunol Med Microbiol (2010) 58(2):202–10. 10.1111/j.1574-695X.2009.00623.x [PubMed] [CrossRef] [Google Scholar]

261. Oster G, Edelsberg J, Hennegan K, Lewin C, Narasimhan V, Slobod K, et al. Prevention of group B streptococcal disease in the first 3 months of life: would routine maternal immunization during pregnancy be cost-effective? Vaccine (2014) 32(37):4778–85. 10.1016/j.vaccine.2014.06.003 [PubMed] [CrossRef] [Google Scholar]

262. Kim SY, Nguyen C, Russell LB, Tomczyk S, Abdul-Hakeem F, Schrag SJ, et al. Cost-effectiveness of a potential group B streptococcal vaccine for pregnant women in the United States. Vaccine (2017) 35(45):6238–47. 10.1016/j.vaccine.2017.08.085 [PubMed] [CrossRef] [Google Scholar]

263. Kobayashi M, Vekemans J, Baker CJ, Ratner AJ, Le Doare K, Schrag SJ. Group B Streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries. F1000Res (2016) 5:2355. 10.12688/f1000research.9363.1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

264. Madhi SA, Dangor Z. Prospects for preventing infant invasive GBS disease through maternal vaccination. Vaccine (2017) 35(35 Pt A):4457–60. 10.1016/j.vaccine.2017.02.025 [PubMed] [CrossRef] [Google Scholar]

265. Abachi S, Lee S, Rupasinghe HP. Molecular mechanisms of inhibition of Streptococcus species by phytochemicals. Molecules (2016) 21(2):215. 10.3390/molecules21020215 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

266. Dhouioui M, Boulila A, Jemli M, Schiets F, Casabianca H, Zina MS. Fatty acids composition and antibacterial activity of Aristolochia longa L. and Bryonia dioica Jacq. growing wild in Tunisia. J Oleo Sci (2016) 65(8):655–61. 10.5650/jos.ess16001 [PubMed] [CrossRef] [Google Scholar]

267. Moncla BJ, Pryke K, Isaacs CE. Killing of Neisseria gonorrhoeae, Streptococcus agalactiae (group B Streptococcus), Haemophilus ducreyi, and vaginal Lactobacillus by 3-O-octyl-sn-glycerol. Antimicrob Agents Chemother (2008) 52(4):1577–9. 10.1128/AAC.01023-07 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

268. Ardolino LI, Meloni M, Brugali G, Corsini E, Galli CL. Preclinical evaluation of tolerability of a selective, bacteriostatic, locally active vaginal formulation. Curr Ther Res Clin Exp (2016) 83:13–21. 10.1016/j.curtheres.2016.07.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

269. Cavaco CK, Patras KA, Zlamal JE, Thoman ML, Morgan EL, Sanderson SD, et al. A novel C5a-derived immunobiotic peptide reduces Streptococcus agalactiae colonization through targeted bacterial killing. Antimicrob Agents Chemother (2013) 57(11):5492–9. 10.1128/AAC.01590-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

270. Ohlsson A, Shah VS, Stade BC. Vaginal chlorhexidine during labour to prevent early-onset neonatal group B streptococcal infection. Cochrane Database Syst Rev (2014) 12:CD003520. 10.1002/14651858.CD003520.pub3 [PubMed] [CrossRef] [Google Scholar]

271. Falagas M, Betsi GI, Athanasiou S. Probiotics for the treatment of women with bacterial vaginosis. Clin Microbiol Infect (2007) 13(7):657–64. 10.1111/j.1469-0691.2007.01688.x [PubMed] [CrossRef] [Google Scholar]

272. Homayouni A, Bastani P, Ziyadi S, Mohammad-Alizadeh-Charandabi S, Ghalibaf M, Mortazavian AM, et al. Effects of probiotics on the recurrence of bacterial vaginosis: a review. J Low Genit Tract Dis (2014) 18(1):79–86. 10.1097/LGT.0b013e31829156ec [PubMed] [CrossRef] [Google Scholar]

273. Acikgoz ZC, Gamberzade S, Gocer S, Ceylan P. [Inhibitor effect of vaginal lactobacilli on group B streptococci]. Mikrobiyol Bul (2005) 39(1):17–23. [PubMed] [Google Scholar]

274. Bodaszewska M, Brzychczy-Wloch M, Gosiewski T, Adamski P, Strus M, Heczko PB. [Evaluation of group B Streptococcus susceptibility to lactic acid bacteria strains]. Med Dosw Mikrobiol (2010) 62(2):153–61. [PubMed] [Google Scholar]

275. Ruiz FO, Gerbaldo G, Garcia MJ, Giordano W, Pascual L, Barberis IL. Synergistic effect between two bacteriocin-like inhibitory substances produced by Lactobacilli strains with inhibitory activity for Streptococcus agalactiae. Curr Microbiol (2012) 64(4):349–56. 10.1007/s00284-011-0077-0 [PubMed] [CrossRef] [Google Scholar]

276. Bodaszewska-Lubas M, Brzychczy-Wloch M, Gosiewski T, Heczko PB. Antibacterial activity of selected standard strains of lactic acid bacteria producing bacteriocins – pilot study. Postepy Hig Med Dosw (Online) (2012) 66:787–94. 10.5604/17322693.1015531 [PubMed] [CrossRef] [Google Scholar]

277. Juarez Tomas MS, Saralegui Duhart CI, De Gregorio PR, Vera Pingitore E, Nader-Macias ME. Urogenital pathogen inhibition and compatibility between vaginal Lactobacillus strains to be considered as probiotic candidates. Eur J Obstet Gynecol Reprod Biol (2011) 159(2):399–406. 10.1016/j.ejogrb.2011.07.010 [PubMed] [CrossRef] [Google Scholar]

278. Ho M, Chang YY, Chang WC, Lin HC, Wang MH, Lin WC, et al. Oral Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 to reduce group B Streptococcus colonization in pregnant women: a randomized controlled trial. Taiwan J Obstet Gynecol (2016) 55(4):515–8. 10.1016/j.tjog.2016.06.003 [PubMed] [CrossRef] [Google Scholar]

279. Hanson L, Vandevusse L, Duster M, Warrack S, Safdar N. Feasibility of oral prenatal probiotics against maternal group B Streptococcus vaginal and rectal colonization. J Obstet Gynecol Neonatal Nurs (2014) 43(3):294–304. 10.1111/1552-6909.12308 [PubMed] [CrossRef] [Google Scholar]

280. Patras KA, Wescombe PA, Rosler B, Hale JD, Tagg JR, Doran KS. Streptococcus salivarius K12 limits group B Streptococcus vaginal colonization. Infect Immun (2015) 83(9):3438–44. 10.1128/IAI.00409-15 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

281. Patras KA. Analyzing Group B Streptococcal and Host Factors Influencing Vaginal Colonization and Exploring Therapeutic Interventions. San Diego, CA: University of California San Diego; (2015). [Google Scholar]

Why is group B streptococcus of particular concern for a neonate?

Group B strep is the most common cause of serious infections in newborns. GBS infection can lead to meningitis, pneumonia, or sepsis. Meningitis is more common in a baby who has a GBS infection happen a week to several months after birth.

What are the risks of a group B strep infection to a newborn infant?

In the United States, GBS bacteria are a leading cause of meningitis and bloodstream infections in a newborn's first three months of life. Newborns are at increased risk for GBS disease if their mother tests positive for the bacteria late in pregnancy. 2 to 3 in every 50 babies (4–6%) who develop GBS disease die.

Why is group B streptococcus such a concern during pregnancy?

In pregnant women, GBS can cause infection of the urinary tract, placenta, womb, and amniotic fluid. Even if they haven't had any symptoms of infection, pregnant women can pass the infection to their babies during labor and delivery.

Which are risk factors for neonatal group B streptococci infection?

Risk factors for GBS infection in neonates include:.
Maternal colonization..
Gestational age <37 completed weeks..
Longer duration of membrane rupture..
Intra-amniotic infection..
Young maternal age..
Black race..
Low maternal levels of GBS-specific anticapsular antibody..
Previous delivery of an infant with invasive GBS disease..