Quanto maior a área transversal de um condutor maior será sua resistência elétrica?

Como mostramos em outro artigo, a corrente elétrica consiste no movimento ordenado de elétrons é formada quando há uma diferença de potencial (ddp) em um fio condutor. E esse movimento no condutor fica sujeito a uma oposição que é conhecida como resistência elétrica.

No inicio do século 19, o físico alemão

Georg Simon Ohm

(1787-1854) descobriu duas leis que determinam a resistência elétrica dos condutores. Essas leis, em alguns casos, também valem para os semicondutores e os isolantes.

A primeira lei de Ohm

Considere um fio feito de material condutor. As extremidades desse fio, são ligadas aos pólos de uma pilha, como mostra a figura abaixo. Desse modo, a pilha estabelece uma diferença de potencial no fio condutor e, consequentemente, uma corrente elétrica. Para se determinar o valor da corrente elétrica, coloca-se em série no circuito um amperímetro e, em paralelo, um voltímetro que permititrá a leitura da tensão. A montagem do circuito está ilustrada na figura abaixo:

  • Quanto maior a área transversal de um condutor maior será sua resistência elétrica?

Com o circuito montado e funcionando, fazemos as medições de tensão e corrente através dos aparelhos instalados. Agora imagine que a diferença de potencial da pilha seja dobrada (podemos fazer isso ligando uma segunda pilha em série com a primeira). Como resultado dessa alteração, o voltímetro marcará o dobro da tensão anterior, e o amperímetro marcará o dobro de corrente elétrica. Se triplicarmos a diferença de potencial, triplicaremos a corrente elétrica. Isso quer dizer que a razão entre a diferença de potencial e a corrente elétrica tem um valor constante. Essa constante é simbolizada pela letra R.

Se colocarmos a corrente elétrica (i) em evidência, podemos observar que, quanto maior o valor de R, menor será a corrente elétrica. Essa constante mostra a resistência que o material oferece à passagem de corrente elétrica.

A primeira lei de Ohm estabelece que a razão entre a diferença de potencial e a corrente elétrica em um condutor é igual a resistência elétrica desse condutor. Vale salientar que a explicação foi desenvolvida tendo como base um condutor de resistência constante. É por isso que condutores desse tipo são chmados de condutores ôhmicos.

A unidade de resistência elétrica no Sistema Internacional está exposta no quadro a seguir.

A segunda lei de Ohm

A primeira lei de Ohm nos apresentou uma nova grandeza física, a resistência elétrica. A segunda lei de Ohm nos dirá de que fatores influenciam a resistência elétrica. De acordo com a segunda lei, a resistência depende da geometria do condutor (espessura e comprimento) e do material de que ele é feito. A resistência é diretamente proporcional ao comprimento do condutor e inversamente proporcional a área de secção (a espessura do condutor). Observe a figura abaixo.

  • Quanto maior a área transversal de um condutor maior será sua resistência elétrica?

A figura apresenta a segunda lei de Ohm, onde L representa o comprimento do condutor e A é a área de sua secção reta. Essa equação mostra que se aumentarmos o comprimento do fio, aumentaremos a resistência elétrica, e que o aumento da área resultará na diminuição da resistência elétrica.

O ρ é a resistividade do condutor, que depende do material de que ele é feito e da sua temperatura.

Ouça este artigo:

Pegando um condutor cilíndrico de comprimento L e de secção transversal A, veremos que sua resistência elétrica será maior quando o comprimento L for maior e a secção A for menor, e a resistência elétrica será menor quando o comprimento L for menor e a secção A for maior, e depende do material do qual é constituído o condutor.

Quanto maior a área transversal de um condutor maior será sua resistência elétrica?

Portanto temos a 2ª Lei de Ohm, que pode ser expressa da seguinte forma:

Quanto maior a área transversal de um condutor maior será sua resistência elétrica?

ρ (letra grega Rô) representa a resistividade elétrica do condutor usado e a sua unidade de media é dada em Ω.m no SI.

Ohm concluiu:

“A resistência elétrica de um condutor homogêneo de secção transversal constante é diretamente proporcional ao seu comprimento e inversamente proporcional à sua área de secção transversal e depende do material do qual ele é feito”.

A resistividade é uma característica do material usado na constituição do condutor. Na tabela abaixo temos a resistividade de alguns metais mais utilizados nas industrias eletroeletrônicas:

Metal - Resistividade em 10-8Ω.m
Cobre - 1,7
Ouro - 2,4
Prata - 1,6
Tungstênio - 5,5

Considera-se a resistividade elétrica do material como uma constante dele, porém ele varia com a temperatura.

Leia também:

  • Primeira Lei de Ohm
  • Leis de Ohm

Texto originalmente publicado em https://www.infoescola.com/fisica/segunda-lei-de-ohm/

Quanto maior for a área de seção transversal de um condutor maior será sua resistência elétrica?

Essa lei informa que a resistência elétrica de um corpo é diretamente proporcional ao seu comprimento e resistividade e inversamente proporcional à sua área transversal.

Quanto maior a área de secção transversal menor a resistência elétrica?

A Segunda Lei de Ohm descreve para a resistência elétrica de um condutor homogêneo de seção transversal uniforme: Quanto maior a área da seção transversal A menor é a sua resistência elétrica. Quanto maior o seu comprimento l maior a sua resistência elétrica.

Quanto maior a área menor a resistência?

Por outro lado, quanto maior a área (A) da seção reta do fio, maior será a quantidade de elétrons que passa por ela na unidade de tempo, isto é, maior a intensidade da corrente (mantendo-se constante a ddp). Assim, dizemos que quanto maior a área (A) da seção reta do fio, menor será sua resistência.

Quanto maior o comprimento de um condutor maior será sua resistência elétrica?

Dessa forma, quanto maior for o comprimento, maior será a resistência; Material que o constitui: os materiais que possuem maior quantidade de elétrons livres são os que oferecem maior facilidade para a passagem da corrente, portanto, uma menor resistência elétrica.